Loading…
Deep Learning for Robust Normal Estimation in Unstructured Point Clouds
Normal estimation in point clouds is a crucial first step for numerous algorithms, from surface reconstruction and scene understanding to rendering. A recurrent issue when estimating normals is to make appropriate decisions close to sharp features, not to smooth edges, or when the sampling density i...
Saved in:
Published in: | Computer graphics forum 2016-08, Vol.35 (5), p.281-290 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5073-66731481ad90ca985fde273d8276c4d6d41b6557584a23c0e64524f0b806e5bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5073-66731481ad90ca985fde273d8276c4d6d41b6557584a23c0e64524f0b806e5bc3 |
container_end_page | 290 |
container_issue | 5 |
container_start_page | 281 |
container_title | Computer graphics forum |
container_volume | 35 |
creator | Boulch, Alexandre Marlet, Renaud |
description | Normal estimation in point clouds is a crucial first step for numerous algorithms, from surface reconstruction and scene understanding to rendering. A recurrent issue when estimating normals is to make appropriate decisions close to sharp features, not to smooth edges, or when the sampling density is not uniform, to prevent bias. Rather than resorting to manually‐designed geometric priors, we propose to learn how to make these decisions, using ground‐truth data made from synthetic scenes. For this, we project a discretized Hough space representing normal directions onto a structure amenable to deep learning. The resulting normal estimation method outperforms most of the time the state of the art regarding robustness to outliers, to noise and to point density variation, in the presence of sharp edges, while remaining fast, scaling up to millions of points. |
doi_str_mv | 10.1111/cgf.12983 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01631736v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4147803231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5073-66731481ad90ca985fde273d8276c4d6d41b6557584a23c0e64524f0b806e5bc3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWC8L3yDgRhfTJpPbzFKqVmGoRVoENyHNZDQ6ndRkRu3bm1ovIJhNwuH7c875ADjCqI_jGeiHqo_TPCNboIcpF0nGWb4NegjHt0CM7YK9EJ4QQlRw1gOjc2OWsDDKN7Z5gJXz8NbNu9DCsfMLVcOL0NqFaq1roG3grAmt73TbeVPCibNNC4e168pwAHYqVQdz-HXvg9nlxXR4lRQ3o-vhWZFohgRJOBcE0wyrMkda5RmrSpMKUmap4JqWvKR4zhkTLKMqJRoZTllKKzTPEDdsrsk-ON38-6hqufRxNL-STll5dVbIdS0uSrAg_BVH9mTDLr176Uxo5cIGbepaNcZ1QeKMMMYxZXlEj_-gT67zTdwkUjiKpBiT3-bauxC8qX4mwEiu9cuoX37qj-xgw77Z2qz-B-VwdPmdSDYJG1rz_pNQ_llGa4LJu_FIFtMJIuP7Qk7IB6U7kns</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811464113</pqid></control><display><type>article</type><title>Deep Learning for Robust Normal Estimation in Unstructured Point Clouds</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Wiley</source><source>Art & Architecture Source</source><creator>Boulch, Alexandre ; Marlet, Renaud</creator><creatorcontrib>Boulch, Alexandre ; Marlet, Renaud</creatorcontrib><description>Normal estimation in point clouds is a crucial first step for numerous algorithms, from surface reconstruction and scene understanding to rendering. A recurrent issue when estimating normals is to make appropriate decisions close to sharp features, not to smooth edges, or when the sampling density is not uniform, to prevent bias. Rather than resorting to manually‐designed geometric priors, we propose to learn how to make these decisions, using ground‐truth data made from synthetic scenes. For this, we project a discretized Hough space representing normal directions onto a structure amenable to deep learning. The resulting normal estimation method outperforms most of the time the state of the art regarding robustness to outliers, to noise and to point density variation, in the presence of sharp edges, while remaining fast, scaling up to millions of points.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12983</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Analysis ; Computer graphics ; Computer Science ; Decisions ; Deep learning ; Density ; Estimating techniques ; Image processing systems ; Learning ; Rendering ; Robustness ; Sampling ; Scaling up ; Studies ; Three dimensional models</subject><ispartof>Computer graphics forum, 2016-08, Vol.35 (5), p.281-290</ispartof><rights>2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.</rights><rights>2016 The Eurographics Association and John Wiley & Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5073-66731481ad90ca985fde273d8276c4d6d41b6557584a23c0e64524f0b806e5bc3</citedby><cites>FETCH-LOGICAL-c5073-66731481ad90ca985fde273d8276c4d6d41b6557584a23c0e64524f0b806e5bc3</cites><orcidid>0000-0002-4196-9665 ; 0000-0003-1612-1758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01631736$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boulch, Alexandre</creatorcontrib><creatorcontrib>Marlet, Renaud</creatorcontrib><title>Deep Learning for Robust Normal Estimation in Unstructured Point Clouds</title><title>Computer graphics forum</title><addtitle>Computer Graphics Forum</addtitle><description>Normal estimation in point clouds is a crucial first step for numerous algorithms, from surface reconstruction and scene understanding to rendering. A recurrent issue when estimating normals is to make appropriate decisions close to sharp features, not to smooth edges, or when the sampling density is not uniform, to prevent bias. Rather than resorting to manually‐designed geometric priors, we propose to learn how to make these decisions, using ground‐truth data made from synthetic scenes. For this, we project a discretized Hough space representing normal directions onto a structure amenable to deep learning. The resulting normal estimation method outperforms most of the time the state of the art regarding robustness to outliers, to noise and to point density variation, in the presence of sharp edges, while remaining fast, scaling up to millions of points.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Computer graphics</subject><subject>Computer Science</subject><subject>Decisions</subject><subject>Deep learning</subject><subject>Density</subject><subject>Estimating techniques</subject><subject>Image processing systems</subject><subject>Learning</subject><subject>Rendering</subject><subject>Robustness</subject><subject>Sampling</subject><subject>Scaling up</subject><subject>Studies</subject><subject>Three dimensional models</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWC8L3yDgRhfTJpPbzFKqVmGoRVoENyHNZDQ6ndRkRu3bm1ovIJhNwuH7c875ADjCqI_jGeiHqo_TPCNboIcpF0nGWb4NegjHt0CM7YK9EJ4QQlRw1gOjc2OWsDDKN7Z5gJXz8NbNu9DCsfMLVcOL0NqFaq1roG3grAmt73TbeVPCibNNC4e168pwAHYqVQdz-HXvg9nlxXR4lRQ3o-vhWZFohgRJOBcE0wyrMkda5RmrSpMKUmap4JqWvKR4zhkTLKMqJRoZTllKKzTPEDdsrsk-ON38-6hqufRxNL-STll5dVbIdS0uSrAg_BVH9mTDLr176Uxo5cIGbepaNcZ1QeKMMMYxZXlEj_-gT67zTdwkUjiKpBiT3-bauxC8qX4mwEiu9cuoX37qj-xgw77Z2qz-B-VwdPmdSDYJG1rz_pNQ_llGa4LJu_FIFtMJIuP7Qk7IB6U7kns</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Boulch, Alexandre</creator><creator>Marlet, Renaud</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4196-9665</orcidid><orcidid>https://orcid.org/0000-0003-1612-1758</orcidid></search><sort><creationdate>201608</creationdate><title>Deep Learning for Robust Normal Estimation in Unstructured Point Clouds</title><author>Boulch, Alexandre ; Marlet, Renaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5073-66731481ad90ca985fde273d8276c4d6d41b6557584a23c0e64524f0b806e5bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Computer graphics</topic><topic>Computer Science</topic><topic>Decisions</topic><topic>Deep learning</topic><topic>Density</topic><topic>Estimating techniques</topic><topic>Image processing systems</topic><topic>Learning</topic><topic>Rendering</topic><topic>Robustness</topic><topic>Sampling</topic><topic>Scaling up</topic><topic>Studies</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boulch, Alexandre</creatorcontrib><creatorcontrib>Marlet, Renaud</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boulch, Alexandre</au><au>Marlet, Renaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning for Robust Normal Estimation in Unstructured Point Clouds</atitle><jtitle>Computer graphics forum</jtitle><addtitle>Computer Graphics Forum</addtitle><date>2016-08</date><risdate>2016</risdate><volume>35</volume><issue>5</issue><spage>281</spage><epage>290</epage><pages>281-290</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Normal estimation in point clouds is a crucial first step for numerous algorithms, from surface reconstruction and scene understanding to rendering. A recurrent issue when estimating normals is to make appropriate decisions close to sharp features, not to smooth edges, or when the sampling density is not uniform, to prevent bias. Rather than resorting to manually‐designed geometric priors, we propose to learn how to make these decisions, using ground‐truth data made from synthetic scenes. For this, we project a discretized Hough space representing normal directions onto a structure amenable to deep learning. The resulting normal estimation method outperforms most of the time the state of the art regarding robustness to outliers, to noise and to point density variation, in the presence of sharp edges, while remaining fast, scaling up to millions of points.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12983</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4196-9665</orcidid><orcidid>https://orcid.org/0000-0003-1612-1758</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2016-08, Vol.35 (5), p.281-290 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01631736v1 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Wiley; Art & Architecture Source |
subjects | Algorithms Analysis Computer graphics Computer Science Decisions Deep learning Density Estimating techniques Image processing systems Learning Rendering Robustness Sampling Scaling up Studies Three dimensional models |
title | Deep Learning for Robust Normal Estimation in Unstructured Point Clouds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20for%20Robust%20Normal%20Estimation%20in%20Unstructured%20Point%20Clouds&rft.jtitle=Computer%20graphics%20forum&rft.au=Boulch,%20Alexandre&rft.date=2016-08&rft.volume=35&rft.issue=5&rft.spage=281&rft.epage=290&rft.pages=281-290&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12983&rft_dat=%3Cproquest_hal_p%3E4147803231%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5073-66731481ad90ca985fde273d8276c4d6d41b6557584a23c0e64524f0b806e5bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1811464113&rft_id=info:pmid/&rfr_iscdi=true |