Loading…

Coexistence in molecular communications

Molecular communications is emerging as a technique to support coordination in nanonetworking, particularly in biochemical systems. In complex biochemical systems such as in the human body, it is not always possible to view the molecular communication link in isolation as chemicals in the system may...

Full description

Saved in:
Bibliographic Details
Published in:Nano communication networks 2018-06, Vol.16, p.37-44
Main Authors: Egan, Malcolm, Mai, Trang C., Duong, Trung Q., Di Renzo, Marco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083
cites cdi_FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083
container_end_page 44
container_issue
container_start_page 37
container_title Nano communication networks
container_volume 16
creator Egan, Malcolm
Mai, Trang C.
Duong, Trung Q.
Di Renzo, Marco
description Molecular communications is emerging as a technique to support coordination in nanonetworking, particularly in biochemical systems. In complex biochemical systems such as in the human body, it is not always possible to view the molecular communication link in isolation as chemicals in the system may react with chemicals used for the purpose of communication. There are two consequences: either the performance of the molecular communication link is reduced; or the molecular link disrupts the function of the biochemical system. As such, it is important to establish conditions when the molecular communication link can coexist with a biochemical system. In this paper, we develop a framework to establish coexistence conditions based on the theory of chemical reaction networks. We then specialize our framework in two settings: an enzyme-aided molecular communication system; and a low-rate molecular communication system near a biochemical system. In each case, we prove sufficient conditions to ensure coexistence.
doi_str_mv 10.1016/j.nancom.2018.02.006
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01650966v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878778917300789</els_id><sourcerecordid>S1878778917300789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gYfexMOuyaabPxehFLVCwYueQzqZxZTdjSTbot_eLCs9OpcZhnmPeT9CbhktGWXi4VD2tofQlRVlqqRVSam4IDOmpCqk1PLyPCt9TRYpHWgurpRmekbuNgG_fRqwB1z6ftmFFuHY2rjMlt2x92AHH_p0Q64a2yZc_PU5-Xh-et9si93by-tmvSuAKzEUUiF1iulaKm51sxecVc4xqLWGiuO-bsQKHAJDBVRis7eslo5j_lNzoIrPyf3k-2lb8xV9Z-OPCdab7Xpnxl2OXFMtxKnKt6vpFmJIKWJzFjBqRjbmYCY2ZmRjaGUymyx7nGSYc5w8RpPAj_mdjwiDccH_b_ALE5tt5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coexistence in molecular communications</title><source>Elsevier</source><creator>Egan, Malcolm ; Mai, Trang C. ; Duong, Trung Q. ; Di Renzo, Marco</creator><creatorcontrib>Egan, Malcolm ; Mai, Trang C. ; Duong, Trung Q. ; Di Renzo, Marco</creatorcontrib><description>Molecular communications is emerging as a technique to support coordination in nanonetworking, particularly in biochemical systems. In complex biochemical systems such as in the human body, it is not always possible to view the molecular communication link in isolation as chemicals in the system may react with chemicals used for the purpose of communication. There are two consequences: either the performance of the molecular communication link is reduced; or the molecular link disrupts the function of the biochemical system. As such, it is important to establish conditions when the molecular communication link can coexist with a biochemical system. In this paper, we develop a framework to establish coexistence conditions based on the theory of chemical reaction networks. We then specialize our framework in two settings: an enzyme-aided molecular communication system; and a low-rate molecular communication system near a biochemical system. In each case, we prove sufficient conditions to ensure coexistence.</description><identifier>ISSN: 1878-7789</identifier><identifier>EISSN: 1878-7797</identifier><identifier>DOI: 10.1016/j.nancom.2018.02.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biochemistry, Molecular Biology ; Chemical reaction networks ; Coexistence ; Computer Science ; Information Theory ; Life Sciences ; Molecular communications ; Molecular Networks</subject><ispartof>Nano communication networks, 2018-06, Vol.16, p.37-44</ispartof><rights>2018 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083</citedby><cites>FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083</cites><orcidid>0000-0002-7153-6799 ; 0000-0003-2534-2018 ; 0000-0003-0772-8793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01650966$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Egan, Malcolm</creatorcontrib><creatorcontrib>Mai, Trang C.</creatorcontrib><creatorcontrib>Duong, Trung Q.</creatorcontrib><creatorcontrib>Di Renzo, Marco</creatorcontrib><title>Coexistence in molecular communications</title><title>Nano communication networks</title><description>Molecular communications is emerging as a technique to support coordination in nanonetworking, particularly in biochemical systems. In complex biochemical systems such as in the human body, it is not always possible to view the molecular communication link in isolation as chemicals in the system may react with chemicals used for the purpose of communication. There are two consequences: either the performance of the molecular communication link is reduced; or the molecular link disrupts the function of the biochemical system. As such, it is important to establish conditions when the molecular communication link can coexist with a biochemical system. In this paper, we develop a framework to establish coexistence conditions based on the theory of chemical reaction networks. We then specialize our framework in two settings: an enzyme-aided molecular communication system; and a low-rate molecular communication system near a biochemical system. In each case, we prove sufficient conditions to ensure coexistence.</description><subject>Biochemistry, Molecular Biology</subject><subject>Chemical reaction networks</subject><subject>Coexistence</subject><subject>Computer Science</subject><subject>Information Theory</subject><subject>Life Sciences</subject><subject>Molecular communications</subject><subject>Molecular Networks</subject><issn>1878-7789</issn><issn>1878-7797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gYfexMOuyaabPxehFLVCwYueQzqZxZTdjSTbot_eLCs9OpcZhnmPeT9CbhktGWXi4VD2tofQlRVlqqRVSam4IDOmpCqk1PLyPCt9TRYpHWgurpRmekbuNgG_fRqwB1z6ftmFFuHY2rjMlt2x92AHH_p0Q64a2yZc_PU5-Xh-et9si93by-tmvSuAKzEUUiF1iulaKm51sxecVc4xqLWGiuO-bsQKHAJDBVRis7eslo5j_lNzoIrPyf3k-2lb8xV9Z-OPCdab7Xpnxl2OXFMtxKnKt6vpFmJIKWJzFjBqRjbmYCY2ZmRjaGUymyx7nGSYc5w8RpPAj_mdjwiDccH_b_ALE5tt5g</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Egan, Malcolm</creator><creator>Mai, Trang C.</creator><creator>Duong, Trung Q.</creator><creator>Di Renzo, Marco</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7153-6799</orcidid><orcidid>https://orcid.org/0000-0003-2534-2018</orcidid><orcidid>https://orcid.org/0000-0003-0772-8793</orcidid></search><sort><creationdate>20180601</creationdate><title>Coexistence in molecular communications</title><author>Egan, Malcolm ; Mai, Trang C. ; Duong, Trung Q. ; Di Renzo, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Chemical reaction networks</topic><topic>Coexistence</topic><topic>Computer Science</topic><topic>Information Theory</topic><topic>Life Sciences</topic><topic>Molecular communications</topic><topic>Molecular Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egan, Malcolm</creatorcontrib><creatorcontrib>Mai, Trang C.</creatorcontrib><creatorcontrib>Duong, Trung Q.</creatorcontrib><creatorcontrib>Di Renzo, Marco</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nano communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egan, Malcolm</au><au>Mai, Trang C.</au><au>Duong, Trung Q.</au><au>Di Renzo, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coexistence in molecular communications</atitle><jtitle>Nano communication networks</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>16</volume><spage>37</spage><epage>44</epage><pages>37-44</pages><issn>1878-7789</issn><eissn>1878-7797</eissn><abstract>Molecular communications is emerging as a technique to support coordination in nanonetworking, particularly in biochemical systems. In complex biochemical systems such as in the human body, it is not always possible to view the molecular communication link in isolation as chemicals in the system may react with chemicals used for the purpose of communication. There are two consequences: either the performance of the molecular communication link is reduced; or the molecular link disrupts the function of the biochemical system. As such, it is important to establish conditions when the molecular communication link can coexist with a biochemical system. In this paper, we develop a framework to establish coexistence conditions based on the theory of chemical reaction networks. We then specialize our framework in two settings: an enzyme-aided molecular communication system; and a low-rate molecular communication system near a biochemical system. In each case, we prove sufficient conditions to ensure coexistence.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nancom.2018.02.006</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7153-6799</orcidid><orcidid>https://orcid.org/0000-0003-2534-2018</orcidid><orcidid>https://orcid.org/0000-0003-0772-8793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1878-7789
ispartof Nano communication networks, 2018-06, Vol.16, p.37-44
issn 1878-7789
1878-7797
language eng
recordid cdi_hal_primary_oai_HAL_hal_01650966v2
source Elsevier
subjects Biochemistry, Molecular Biology
Chemical reaction networks
Coexistence
Computer Science
Information Theory
Life Sciences
Molecular communications
Molecular Networks
title Coexistence in molecular communications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coexistence%20in%20molecular%20communications&rft.jtitle=Nano%20communication%20networks&rft.au=Egan,%20Malcolm&rft.date=2018-06-01&rft.volume=16&rft.spage=37&rft.epage=44&rft.pages=37-44&rft.issn=1878-7789&rft.eissn=1878-7797&rft_id=info:doi/10.1016/j.nancom.2018.02.006&rft_dat=%3Celsevier_hal_p%3ES1878778917300789%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true