Loading…
Coexistence in molecular communications
Molecular communications is emerging as a technique to support coordination in nanonetworking, particularly in biochemical systems. In complex biochemical systems such as in the human body, it is not always possible to view the molecular communication link in isolation as chemicals in the system may...
Saved in:
Published in: | Nano communication networks 2018-06, Vol.16, p.37-44 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083 |
container_end_page | 44 |
container_issue | |
container_start_page | 37 |
container_title | Nano communication networks |
container_volume | 16 |
creator | Egan, Malcolm Mai, Trang C. Duong, Trung Q. Di Renzo, Marco |
description | Molecular communications is emerging as a technique to support coordination in nanonetworking, particularly in biochemical systems. In complex biochemical systems such as in the human body, it is not always possible to view the molecular communication link in isolation as chemicals in the system may react with chemicals used for the purpose of communication. There are two consequences: either the performance of the molecular communication link is reduced; or the molecular link disrupts the function of the biochemical system. As such, it is important to establish conditions when the molecular communication link can coexist with a biochemical system. In this paper, we develop a framework to establish coexistence conditions based on the theory of chemical reaction networks. We then specialize our framework in two settings: an enzyme-aided molecular communication system; and a low-rate molecular communication system near a biochemical system. In each case, we prove sufficient conditions to ensure coexistence. |
doi_str_mv | 10.1016/j.nancom.2018.02.006 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01650966v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878778917300789</els_id><sourcerecordid>S1878778917300789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gYfexMOuyaabPxehFLVCwYueQzqZxZTdjSTbot_eLCs9OpcZhnmPeT9CbhktGWXi4VD2tofQlRVlqqRVSam4IDOmpCqk1PLyPCt9TRYpHWgurpRmekbuNgG_fRqwB1z6ftmFFuHY2rjMlt2x92AHH_p0Q64a2yZc_PU5-Xh-et9si93by-tmvSuAKzEUUiF1iulaKm51sxecVc4xqLWGiuO-bsQKHAJDBVRis7eslo5j_lNzoIrPyf3k-2lb8xV9Z-OPCdab7Xpnxl2OXFMtxKnKt6vpFmJIKWJzFjBqRjbmYCY2ZmRjaGUymyx7nGSYc5w8RpPAj_mdjwiDccH_b_ALE5tt5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coexistence in molecular communications</title><source>Elsevier</source><creator>Egan, Malcolm ; Mai, Trang C. ; Duong, Trung Q. ; Di Renzo, Marco</creator><creatorcontrib>Egan, Malcolm ; Mai, Trang C. ; Duong, Trung Q. ; Di Renzo, Marco</creatorcontrib><description>Molecular communications is emerging as a technique to support coordination in nanonetworking, particularly in biochemical systems. In complex biochemical systems such as in the human body, it is not always possible to view the molecular communication link in isolation as chemicals in the system may react with chemicals used for the purpose of communication. There are two consequences: either the performance of the molecular communication link is reduced; or the molecular link disrupts the function of the biochemical system. As such, it is important to establish conditions when the molecular communication link can coexist with a biochemical system. In this paper, we develop a framework to establish coexistence conditions based on the theory of chemical reaction networks. We then specialize our framework in two settings: an enzyme-aided molecular communication system; and a low-rate molecular communication system near a biochemical system. In each case, we prove sufficient conditions to ensure coexistence.</description><identifier>ISSN: 1878-7789</identifier><identifier>EISSN: 1878-7797</identifier><identifier>DOI: 10.1016/j.nancom.2018.02.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biochemistry, Molecular Biology ; Chemical reaction networks ; Coexistence ; Computer Science ; Information Theory ; Life Sciences ; Molecular communications ; Molecular Networks</subject><ispartof>Nano communication networks, 2018-06, Vol.16, p.37-44</ispartof><rights>2018 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083</citedby><cites>FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083</cites><orcidid>0000-0002-7153-6799 ; 0000-0003-2534-2018 ; 0000-0003-0772-8793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01650966$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Egan, Malcolm</creatorcontrib><creatorcontrib>Mai, Trang C.</creatorcontrib><creatorcontrib>Duong, Trung Q.</creatorcontrib><creatorcontrib>Di Renzo, Marco</creatorcontrib><title>Coexistence in molecular communications</title><title>Nano communication networks</title><description>Molecular communications is emerging as a technique to support coordination in nanonetworking, particularly in biochemical systems. In complex biochemical systems such as in the human body, it is not always possible to view the molecular communication link in isolation as chemicals in the system may react with chemicals used for the purpose of communication. There are two consequences: either the performance of the molecular communication link is reduced; or the molecular link disrupts the function of the biochemical system. As such, it is important to establish conditions when the molecular communication link can coexist with a biochemical system. In this paper, we develop a framework to establish coexistence conditions based on the theory of chemical reaction networks. We then specialize our framework in two settings: an enzyme-aided molecular communication system; and a low-rate molecular communication system near a biochemical system. In each case, we prove sufficient conditions to ensure coexistence.</description><subject>Biochemistry, Molecular Biology</subject><subject>Chemical reaction networks</subject><subject>Coexistence</subject><subject>Computer Science</subject><subject>Information Theory</subject><subject>Life Sciences</subject><subject>Molecular communications</subject><subject>Molecular Networks</subject><issn>1878-7789</issn><issn>1878-7797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gYfexMOuyaabPxehFLVCwYueQzqZxZTdjSTbot_eLCs9OpcZhnmPeT9CbhktGWXi4VD2tofQlRVlqqRVSam4IDOmpCqk1PLyPCt9TRYpHWgurpRmekbuNgG_fRqwB1z6ftmFFuHY2rjMlt2x92AHH_p0Q64a2yZc_PU5-Xh-et9si93by-tmvSuAKzEUUiF1iulaKm51sxecVc4xqLWGiuO-bsQKHAJDBVRis7eslo5j_lNzoIrPyf3k-2lb8xV9Z-OPCdab7Xpnxl2OXFMtxKnKt6vpFmJIKWJzFjBqRjbmYCY2ZmRjaGUymyx7nGSYc5w8RpPAj_mdjwiDccH_b_ALE5tt5g</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Egan, Malcolm</creator><creator>Mai, Trang C.</creator><creator>Duong, Trung Q.</creator><creator>Di Renzo, Marco</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7153-6799</orcidid><orcidid>https://orcid.org/0000-0003-2534-2018</orcidid><orcidid>https://orcid.org/0000-0003-0772-8793</orcidid></search><sort><creationdate>20180601</creationdate><title>Coexistence in molecular communications</title><author>Egan, Malcolm ; Mai, Trang C. ; Duong, Trung Q. ; Di Renzo, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Chemical reaction networks</topic><topic>Coexistence</topic><topic>Computer Science</topic><topic>Information Theory</topic><topic>Life Sciences</topic><topic>Molecular communications</topic><topic>Molecular Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Egan, Malcolm</creatorcontrib><creatorcontrib>Mai, Trang C.</creatorcontrib><creatorcontrib>Duong, Trung Q.</creatorcontrib><creatorcontrib>Di Renzo, Marco</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nano communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Egan, Malcolm</au><au>Mai, Trang C.</au><au>Duong, Trung Q.</au><au>Di Renzo, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coexistence in molecular communications</atitle><jtitle>Nano communication networks</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>16</volume><spage>37</spage><epage>44</epage><pages>37-44</pages><issn>1878-7789</issn><eissn>1878-7797</eissn><abstract>Molecular communications is emerging as a technique to support coordination in nanonetworking, particularly in biochemical systems. In complex biochemical systems such as in the human body, it is not always possible to view the molecular communication link in isolation as chemicals in the system may react with chemicals used for the purpose of communication. There are two consequences: either the performance of the molecular communication link is reduced; or the molecular link disrupts the function of the biochemical system. As such, it is important to establish conditions when the molecular communication link can coexist with a biochemical system. In this paper, we develop a framework to establish coexistence conditions based on the theory of chemical reaction networks. We then specialize our framework in two settings: an enzyme-aided molecular communication system; and a low-rate molecular communication system near a biochemical system. In each case, we prove sufficient conditions to ensure coexistence.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nancom.2018.02.006</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7153-6799</orcidid><orcidid>https://orcid.org/0000-0003-2534-2018</orcidid><orcidid>https://orcid.org/0000-0003-0772-8793</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1878-7789 |
ispartof | Nano communication networks, 2018-06, Vol.16, p.37-44 |
issn | 1878-7789 1878-7797 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01650966v2 |
source | Elsevier |
subjects | Biochemistry, Molecular Biology Chemical reaction networks Coexistence Computer Science Information Theory Life Sciences Molecular communications Molecular Networks |
title | Coexistence in molecular communications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coexistence%20in%20molecular%20communications&rft.jtitle=Nano%20communication%20networks&rft.au=Egan,%20Malcolm&rft.date=2018-06-01&rft.volume=16&rft.spage=37&rft.epage=44&rft.pages=37-44&rft.issn=1878-7789&rft.eissn=1878-7797&rft_id=info:doi/10.1016/j.nancom.2018.02.006&rft_dat=%3Celsevier_hal_p%3ES1878778917300789%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-78e0d8195783a9fb6312dd1c599c23eb5f64cdec1e8c07efba157d3e79793c083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |