Loading…

Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature

Summary Mechanisms of bacterial adaptation to environmental changes are of great interest for both fundamental biology and engineering applications. In this work, we consider a continuous‐time dynamic problem of resource allocation between metabolic and gene expression machineries for a self‐replica...

Full description

Saved in:
Bibliographic Details
Published in:Optimal control applications & methods 2018-03, Vol.39 (2), p.1084-1109
Main Authors: Yegorov, Ivan, Mairet, Francis, Gouzé, Jean‐Luc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063
cites cdi_FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063
container_end_page 1109
container_issue 2
container_start_page 1084
container_title Optimal control applications & methods
container_volume 39
creator Yegorov, Ivan
Mairet, Francis
Gouzé, Jean‐Luc
description Summary Mechanisms of bacterial adaptation to environmental changes are of great interest for both fundamental biology and engineering applications. In this work, we consider a continuous‐time dynamic problem of resource allocation between metabolic and gene expression machineries for a self‐replicating prokaryotic cell population. In compliance with evolutionary principles, the criterion is to maximize the accumulated structural biomass. In the model, we include both the degradation of proteins into amino acids and the recycling of the latter (ie, using as precursors again). On the basis of the analytical investigation of our problem by Pontryagin's maximum principle, we develop a numerical method to approximate the switching curve of the optimal feedback control strategy. The obtained field of extremal state trajectories consists of chattering arcs and 1 steady‐state singular arc. The constructed feedback control law can serve as a benchmark for comparing actual bacterial strategies of resource allocation. We also study the influence of temperature, whose increase intensifies protein degradation. While the growth rate suddenly decreases with the increase in temperature in a certain range, the optimal control synthesis appears to be essentially less sensitive.
doi_str_mv 10.1002/oca.2398
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01655960v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012841985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYP8CcEvCi4dbK7ySbHUtQKhV70HNLsZF3dbmo2tfTfm1rx5iUDw8PL5CXkisGYAeT33ppxXih5REYMlMoYZ-UxGQEriywHWZ2Ss2F4B4CKFfmINIt1bFemow6xXhr7QYcYTMSmxYE6H2jaRQxtEk3w2_hGt216amyCqU1sfX9HA9qd7dq-uaOmryk6hzZS72jE1RpT2ibgBTlxphvw8neek9fHh5fpLJsvnp6nk3lm080yW0JtpapkASAEKqWqygEXJTJha855IarSlpUSApRRS15WUskSigIEWAeiOCe3h9w30-l1SF8LO-1Nq2eTud7vgAnOlYAvluz1wa6D_9zgEPW734Q-nadzYLksmZI8qZuDssEPQ0D3F8tA7yvXqXK9rzzR7EC3bYe7f51eTCc__huQmn_s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012841985</pqid></control><display><type>article</type><title>Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature</title><source>Wiley</source><creator>Yegorov, Ivan ; Mairet, Francis ; Gouzé, Jean‐Luc</creator><creatorcontrib>Yegorov, Ivan ; Mairet, Francis ; Gouzé, Jean‐Luc</creatorcontrib><description>Summary Mechanisms of bacterial adaptation to environmental changes are of great interest for both fundamental biology and engineering applications. In this work, we consider a continuous‐time dynamic problem of resource allocation between metabolic and gene expression machineries for a self‐replicating prokaryotic cell population. In compliance with evolutionary principles, the criterion is to maximize the accumulated structural biomass. In the model, we include both the degradation of proteins into amino acids and the recycling of the latter (ie, using as precursors again). On the basis of the analytical investigation of our problem by Pontryagin's maximum principle, we develop a numerical method to approximate the switching curve of the optimal feedback control strategy. The obtained field of extremal state trajectories consists of chattering arcs and 1 steady‐state singular arc. The constructed feedback control law can serve as a benchmark for comparing actual bacterial strategies of resource allocation. We also study the influence of temperature, whose increase intensifies protein degradation. While the growth rate suddenly decreases with the increase in temperature in a certain range, the optimal control synthesis appears to be essentially less sensitive.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2398</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Amino acids ; Automatic Control Engineering ; Bacteria ; bacterial growth ; chattering regime ; Computer Science ; Control systems ; Degradation ; effect of temperature ; Engineering Sciences ; Feedback control ; feedback strategy ; Gene expression ; Life Sciences ; Mathematical models ; Mathematics ; Maximum principle ; Numerical analysis ; Optimal control ; Pontryagin's maximum principle ; protein degradation ; Proteins ; recycling ; Replication ; Resource allocation ; singular regime ; switching curve ; Temperature effects</subject><ispartof>Optimal control applications &amp; methods, 2018-03, Vol.39 (2), p.1084-1109</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063</citedby><cites>FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063</cites><orcidid>0000-0002-1021-4016 ; 0000-0001-7156-7934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01655960$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yegorov, Ivan</creatorcontrib><creatorcontrib>Mairet, Francis</creatorcontrib><creatorcontrib>Gouzé, Jean‐Luc</creatorcontrib><title>Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature</title><title>Optimal control applications &amp; methods</title><description>Summary Mechanisms of bacterial adaptation to environmental changes are of great interest for both fundamental biology and engineering applications. In this work, we consider a continuous‐time dynamic problem of resource allocation between metabolic and gene expression machineries for a self‐replicating prokaryotic cell population. In compliance with evolutionary principles, the criterion is to maximize the accumulated structural biomass. In the model, we include both the degradation of proteins into amino acids and the recycling of the latter (ie, using as precursors again). On the basis of the analytical investigation of our problem by Pontryagin's maximum principle, we develop a numerical method to approximate the switching curve of the optimal feedback control strategy. The obtained field of extremal state trajectories consists of chattering arcs and 1 steady‐state singular arc. The constructed feedback control law can serve as a benchmark for comparing actual bacterial strategies of resource allocation. We also study the influence of temperature, whose increase intensifies protein degradation. While the growth rate suddenly decreases with the increase in temperature in a certain range, the optimal control synthesis appears to be essentially less sensitive.</description><subject>Amino acids</subject><subject>Automatic Control Engineering</subject><subject>Bacteria</subject><subject>bacterial growth</subject><subject>chattering regime</subject><subject>Computer Science</subject><subject>Control systems</subject><subject>Degradation</subject><subject>effect of temperature</subject><subject>Engineering Sciences</subject><subject>Feedback control</subject><subject>feedback strategy</subject><subject>Gene expression</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum principle</subject><subject>Numerical analysis</subject><subject>Optimal control</subject><subject>Pontryagin's maximum principle</subject><subject>protein degradation</subject><subject>Proteins</subject><subject>recycling</subject><subject>Replication</subject><subject>Resource allocation</subject><subject>singular regime</subject><subject>switching curve</subject><subject>Temperature effects</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYP8CcEvCi4dbK7ySbHUtQKhV70HNLsZF3dbmo2tfTfm1rx5iUDw8PL5CXkisGYAeT33ppxXih5REYMlMoYZ-UxGQEriywHWZ2Ss2F4B4CKFfmINIt1bFemow6xXhr7QYcYTMSmxYE6H2jaRQxtEk3w2_hGt216amyCqU1sfX9HA9qd7dq-uaOmryk6hzZS72jE1RpT2ibgBTlxphvw8neek9fHh5fpLJsvnp6nk3lm080yW0JtpapkASAEKqWqygEXJTJha855IarSlpUSApRRS15WUskSigIEWAeiOCe3h9w30-l1SF8LO-1Nq2eTud7vgAnOlYAvluz1wa6D_9zgEPW734Q-nadzYLksmZI8qZuDssEPQ0D3F8tA7yvXqXK9rzzR7EC3bYe7f51eTCc__huQmn_s</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Yegorov, Ivan</creator><creator>Mairet, Francis</creator><creator>Gouzé, Jean‐Luc</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1021-4016</orcidid><orcidid>https://orcid.org/0000-0001-7156-7934</orcidid></search><sort><creationdate>201803</creationdate><title>Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature</title><author>Yegorov, Ivan ; Mairet, Francis ; Gouzé, Jean‐Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino acids</topic><topic>Automatic Control Engineering</topic><topic>Bacteria</topic><topic>bacterial growth</topic><topic>chattering regime</topic><topic>Computer Science</topic><topic>Control systems</topic><topic>Degradation</topic><topic>effect of temperature</topic><topic>Engineering Sciences</topic><topic>Feedback control</topic><topic>feedback strategy</topic><topic>Gene expression</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum principle</topic><topic>Numerical analysis</topic><topic>Optimal control</topic><topic>Pontryagin's maximum principle</topic><topic>protein degradation</topic><topic>Proteins</topic><topic>recycling</topic><topic>Replication</topic><topic>Resource allocation</topic><topic>singular regime</topic><topic>switching curve</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yegorov, Ivan</creatorcontrib><creatorcontrib>Mairet, Francis</creatorcontrib><creatorcontrib>Gouzé, Jean‐Luc</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yegorov, Ivan</au><au>Mairet, Francis</au><au>Gouzé, Jean‐Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature</atitle><jtitle>Optimal control applications &amp; methods</jtitle><date>2018-03</date><risdate>2018</risdate><volume>39</volume><issue>2</issue><spage>1084</spage><epage>1109</epage><pages>1084-1109</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>Summary Mechanisms of bacterial adaptation to environmental changes are of great interest for both fundamental biology and engineering applications. In this work, we consider a continuous‐time dynamic problem of resource allocation between metabolic and gene expression machineries for a self‐replicating prokaryotic cell population. In compliance with evolutionary principles, the criterion is to maximize the accumulated structural biomass. In the model, we include both the degradation of proteins into amino acids and the recycling of the latter (ie, using as precursors again). On the basis of the analytical investigation of our problem by Pontryagin's maximum principle, we develop a numerical method to approximate the switching curve of the optimal feedback control strategy. The obtained field of extremal state trajectories consists of chattering arcs and 1 steady‐state singular arc. The constructed feedback control law can serve as a benchmark for comparing actual bacterial strategies of resource allocation. We also study the influence of temperature, whose increase intensifies protein degradation. While the growth rate suddenly decreases with the increase in temperature in a certain range, the optimal control synthesis appears to be essentially less sensitive.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.2398</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-1021-4016</orcidid><orcidid>https://orcid.org/0000-0001-7156-7934</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2018-03, Vol.39 (2), p.1084-1109
issn 0143-2087
1099-1514
language eng
recordid cdi_hal_primary_oai_HAL_hal_01655960v1
source Wiley
subjects Amino acids
Automatic Control Engineering
Bacteria
bacterial growth
chattering regime
Computer Science
Control systems
Degradation
effect of temperature
Engineering Sciences
Feedback control
feedback strategy
Gene expression
Life Sciences
Mathematical models
Mathematics
Maximum principle
Numerical analysis
Optimal control
Pontryagin's maximum principle
protein degradation
Proteins
recycling
Replication
Resource allocation
singular regime
switching curve
Temperature effects
title Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20feedback%20strategies%20for%20bacterial%20growth%20with%20degradation,%20recycling,%20and%20effect%20of%20temperature&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Yegorov,%20Ivan&rft.date=2018-03&rft.volume=39&rft.issue=2&rft.spage=1084&rft.epage=1109&rft.pages=1084-1109&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2398&rft_dat=%3Cproquest_hal_p%3E2012841985%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2012841985&rft_id=info:pmid/&rfr_iscdi=true