Loading…
Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature
Summary Mechanisms of bacterial adaptation to environmental changes are of great interest for both fundamental biology and engineering applications. In this work, we consider a continuous‐time dynamic problem of resource allocation between metabolic and gene expression machineries for a self‐replica...
Saved in:
Published in: | Optimal control applications & methods 2018-03, Vol.39 (2), p.1084-1109 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063 |
---|---|
cites | cdi_FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063 |
container_end_page | 1109 |
container_issue | 2 |
container_start_page | 1084 |
container_title | Optimal control applications & methods |
container_volume | 39 |
creator | Yegorov, Ivan Mairet, Francis Gouzé, Jean‐Luc |
description | Summary
Mechanisms of bacterial adaptation to environmental changes are of great interest for both fundamental biology and engineering applications. In this work, we consider a continuous‐time dynamic problem of resource allocation between metabolic and gene expression machineries for a self‐replicating prokaryotic cell population. In compliance with evolutionary principles, the criterion is to maximize the accumulated structural biomass. In the model, we include both the degradation of proteins into amino acids and the recycling of the latter (ie, using as precursors again). On the basis of the analytical investigation of our problem by Pontryagin's maximum principle, we develop a numerical method to approximate the switching curve of the optimal feedback control strategy. The obtained field of extremal state trajectories consists of chattering arcs and 1 steady‐state singular arc. The constructed feedback control law can serve as a benchmark for comparing actual bacterial strategies of resource allocation. We also study the influence of temperature, whose increase intensifies protein degradation. While the growth rate suddenly decreases with the increase in temperature in a certain range, the optimal control synthesis appears to be essentially less sensitive. |
doi_str_mv | 10.1002/oca.2398 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01655960v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012841985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYP8CcEvCi4dbK7ySbHUtQKhV70HNLsZF3dbmo2tfTfm1rx5iUDw8PL5CXkisGYAeT33ppxXih5REYMlMoYZ-UxGQEriywHWZ2Ss2F4B4CKFfmINIt1bFemow6xXhr7QYcYTMSmxYE6H2jaRQxtEk3w2_hGt216amyCqU1sfX9HA9qd7dq-uaOmryk6hzZS72jE1RpT2ibgBTlxphvw8neek9fHh5fpLJsvnp6nk3lm080yW0JtpapkASAEKqWqygEXJTJha855IarSlpUSApRRS15WUskSigIEWAeiOCe3h9w30-l1SF8LO-1Nq2eTud7vgAnOlYAvluz1wa6D_9zgEPW734Q-nadzYLksmZI8qZuDssEPQ0D3F8tA7yvXqXK9rzzR7EC3bYe7f51eTCc__huQmn_s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012841985</pqid></control><display><type>article</type><title>Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature</title><source>Wiley</source><creator>Yegorov, Ivan ; Mairet, Francis ; Gouzé, Jean‐Luc</creator><creatorcontrib>Yegorov, Ivan ; Mairet, Francis ; Gouzé, Jean‐Luc</creatorcontrib><description>Summary
Mechanisms of bacterial adaptation to environmental changes are of great interest for both fundamental biology and engineering applications. In this work, we consider a continuous‐time dynamic problem of resource allocation between metabolic and gene expression machineries for a self‐replicating prokaryotic cell population. In compliance with evolutionary principles, the criterion is to maximize the accumulated structural biomass. In the model, we include both the degradation of proteins into amino acids and the recycling of the latter (ie, using as precursors again). On the basis of the analytical investigation of our problem by Pontryagin's maximum principle, we develop a numerical method to approximate the switching curve of the optimal feedback control strategy. The obtained field of extremal state trajectories consists of chattering arcs and 1 steady‐state singular arc. The constructed feedback control law can serve as a benchmark for comparing actual bacterial strategies of resource allocation. We also study the influence of temperature, whose increase intensifies protein degradation. While the growth rate suddenly decreases with the increase in temperature in a certain range, the optimal control synthesis appears to be essentially less sensitive.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2398</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Amino acids ; Automatic Control Engineering ; Bacteria ; bacterial growth ; chattering regime ; Computer Science ; Control systems ; Degradation ; effect of temperature ; Engineering Sciences ; Feedback control ; feedback strategy ; Gene expression ; Life Sciences ; Mathematical models ; Mathematics ; Maximum principle ; Numerical analysis ; Optimal control ; Pontryagin's maximum principle ; protein degradation ; Proteins ; recycling ; Replication ; Resource allocation ; singular regime ; switching curve ; Temperature effects</subject><ispartof>Optimal control applications & methods, 2018-03, Vol.39 (2), p.1084-1109</ispartof><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063</citedby><cites>FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063</cites><orcidid>0000-0002-1021-4016 ; 0000-0001-7156-7934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01655960$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yegorov, Ivan</creatorcontrib><creatorcontrib>Mairet, Francis</creatorcontrib><creatorcontrib>Gouzé, Jean‐Luc</creatorcontrib><title>Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature</title><title>Optimal control applications & methods</title><description>Summary
Mechanisms of bacterial adaptation to environmental changes are of great interest for both fundamental biology and engineering applications. In this work, we consider a continuous‐time dynamic problem of resource allocation between metabolic and gene expression machineries for a self‐replicating prokaryotic cell population. In compliance with evolutionary principles, the criterion is to maximize the accumulated structural biomass. In the model, we include both the degradation of proteins into amino acids and the recycling of the latter (ie, using as precursors again). On the basis of the analytical investigation of our problem by Pontryagin's maximum principle, we develop a numerical method to approximate the switching curve of the optimal feedback control strategy. The obtained field of extremal state trajectories consists of chattering arcs and 1 steady‐state singular arc. The constructed feedback control law can serve as a benchmark for comparing actual bacterial strategies of resource allocation. We also study the influence of temperature, whose increase intensifies protein degradation. While the growth rate suddenly decreases with the increase in temperature in a certain range, the optimal control synthesis appears to be essentially less sensitive.</description><subject>Amino acids</subject><subject>Automatic Control Engineering</subject><subject>Bacteria</subject><subject>bacterial growth</subject><subject>chattering regime</subject><subject>Computer Science</subject><subject>Control systems</subject><subject>Degradation</subject><subject>effect of temperature</subject><subject>Engineering Sciences</subject><subject>Feedback control</subject><subject>feedback strategy</subject><subject>Gene expression</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum principle</subject><subject>Numerical analysis</subject><subject>Optimal control</subject><subject>Pontryagin's maximum principle</subject><subject>protein degradation</subject><subject>Proteins</subject><subject>recycling</subject><subject>Replication</subject><subject>Resource allocation</subject><subject>singular regime</subject><subject>switching curve</subject><subject>Temperature effects</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYP8CcEvCi4dbK7ySbHUtQKhV70HNLsZF3dbmo2tfTfm1rx5iUDw8PL5CXkisGYAeT33ppxXih5REYMlMoYZ-UxGQEriywHWZ2Ss2F4B4CKFfmINIt1bFemow6xXhr7QYcYTMSmxYE6H2jaRQxtEk3w2_hGt216amyCqU1sfX9HA9qd7dq-uaOmryk6hzZS72jE1RpT2ibgBTlxphvw8neek9fHh5fpLJsvnp6nk3lm080yW0JtpapkASAEKqWqygEXJTJha855IarSlpUSApRRS15WUskSigIEWAeiOCe3h9w30-l1SF8LO-1Nq2eTud7vgAnOlYAvluz1wa6D_9zgEPW734Q-nadzYLksmZI8qZuDssEPQ0D3F8tA7yvXqXK9rzzR7EC3bYe7f51eTCc__huQmn_s</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Yegorov, Ivan</creator><creator>Mairet, Francis</creator><creator>Gouzé, Jean‐Luc</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1021-4016</orcidid><orcidid>https://orcid.org/0000-0001-7156-7934</orcidid></search><sort><creationdate>201803</creationdate><title>Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature</title><author>Yegorov, Ivan ; Mairet, Francis ; Gouzé, Jean‐Luc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino acids</topic><topic>Automatic Control Engineering</topic><topic>Bacteria</topic><topic>bacterial growth</topic><topic>chattering regime</topic><topic>Computer Science</topic><topic>Control systems</topic><topic>Degradation</topic><topic>effect of temperature</topic><topic>Engineering Sciences</topic><topic>Feedback control</topic><topic>feedback strategy</topic><topic>Gene expression</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum principle</topic><topic>Numerical analysis</topic><topic>Optimal control</topic><topic>Pontryagin's maximum principle</topic><topic>protein degradation</topic><topic>Proteins</topic><topic>recycling</topic><topic>Replication</topic><topic>Resource allocation</topic><topic>singular regime</topic><topic>switching curve</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yegorov, Ivan</creatorcontrib><creatorcontrib>Mairet, Francis</creatorcontrib><creatorcontrib>Gouzé, Jean‐Luc</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Optimal control applications & methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yegorov, Ivan</au><au>Mairet, Francis</au><au>Gouzé, Jean‐Luc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature</atitle><jtitle>Optimal control applications & methods</jtitle><date>2018-03</date><risdate>2018</risdate><volume>39</volume><issue>2</issue><spage>1084</spage><epage>1109</epage><pages>1084-1109</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>Summary
Mechanisms of bacterial adaptation to environmental changes are of great interest for both fundamental biology and engineering applications. In this work, we consider a continuous‐time dynamic problem of resource allocation between metabolic and gene expression machineries for a self‐replicating prokaryotic cell population. In compliance with evolutionary principles, the criterion is to maximize the accumulated structural biomass. In the model, we include both the degradation of proteins into amino acids and the recycling of the latter (ie, using as precursors again). On the basis of the analytical investigation of our problem by Pontryagin's maximum principle, we develop a numerical method to approximate the switching curve of the optimal feedback control strategy. The obtained field of extremal state trajectories consists of chattering arcs and 1 steady‐state singular arc. The constructed feedback control law can serve as a benchmark for comparing actual bacterial strategies of resource allocation. We also study the influence of temperature, whose increase intensifies protein degradation. While the growth rate suddenly decreases with the increase in temperature in a certain range, the optimal control synthesis appears to be essentially less sensitive.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.2398</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-1021-4016</orcidid><orcidid>https://orcid.org/0000-0001-7156-7934</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-2087 |
ispartof | Optimal control applications & methods, 2018-03, Vol.39 (2), p.1084-1109 |
issn | 0143-2087 1099-1514 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01655960v1 |
source | Wiley |
subjects | Amino acids Automatic Control Engineering Bacteria bacterial growth chattering regime Computer Science Control systems Degradation effect of temperature Engineering Sciences Feedback control feedback strategy Gene expression Life Sciences Mathematical models Mathematics Maximum principle Numerical analysis Optimal control Pontryagin's maximum principle protein degradation Proteins recycling Replication Resource allocation singular regime switching curve Temperature effects |
title | Optimal feedback strategies for bacterial growth with degradation, recycling, and effect of temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20feedback%20strategies%20for%20bacterial%20growth%20with%20degradation,%20recycling,%20and%20effect%20of%20temperature&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Yegorov,%20Ivan&rft.date=2018-03&rft.volume=39&rft.issue=2&rft.spage=1084&rft.epage=1109&rft.pages=1084-1109&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2398&rft_dat=%3Cproquest_hal_p%3E2012841985%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3988-b0dc897830066e99977f0564e16cd5553674c4796609a9b5478984033060cf063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2012841985&rft_id=info:pmid/&rfr_iscdi=true |