Loading…

Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications

When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximu...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2018-05, Vol.104, p.102-112
Main Authors: Danilov, Artem, Tselikov, Gleb, Wu, Fan, Kravets, Vasyl G., Ozerov, Igor, Bedu, Frederic, Grigorenko, Alexander N., Kabashin, Andrei V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-5d8c934d402b8f4e375aa1e48a9a75f4097e19f03131efd9b186eededc96f56c3
cites cdi_FETCH-LOGICAL-c434t-5d8c934d402b8f4e375aa1e48a9a75f4097e19f03131efd9b186eededc96f56c3
container_end_page 112
container_issue
container_start_page 102
container_title Biosensors & bioelectronics
container_volume 104
creator Danilov, Artem
Tselikov, Gleb
Wu, Fan
Kravets, Vasyl G.
Ozerov, Igor
Bedu, Frederic
Grigorenko, Alexander N.
Kabashin, Andrei V.
description When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100–200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLRair, PSLRwat for air and water, respectively) and substrate (PSLRsub) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 105 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of nanoscale architectures, including drastic concentration of electric field, possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise the advancement of current state-of-the-art plasmonic biosensing technology toward single molecule label-free detection. •Potential of metamaterials based on nanoparticle arrays in biosensing applications is studied.•Metamaterials can generate ultranarrow surface lattice resonances (down to 2nm FWHM).•Surface lattice reso
doi_str_mv 10.1016/j.bios.2017.12.001
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01660871v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566317307996</els_id><sourcerecordid>1989587274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-5d8c934d402b8f4e375aa1e48a9a75f4097e19f03131efd9b186eededc96f56c3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EotvCF-CAcoRDgsd2_ljiUlVAkVbiQs_WrD0Br5I42N6ifnscbemxp5FGv_c08x5j74A3wKH7dGwOPqRGcOgbEA3n8ILtYOhlrYRsX7Id121Xt10nL9hlSkfOeQ-av2YXQksJSqgdc3dTjlgvGGP4W6VTHNFSNWHOvsxIKSy4WEqVX6p1wjSHxdtqpowzZooep6pI8SFVY4jVdg8tyS-_KlzXyVvMPizpDXs14pTo7eO8Yndfv_y8ua33P759v7ne11ZJlevWDVZL5RQXh2FUJPsWEUgNqLFvR8V1T6BHLkECjU4fYOiIHDmru7HtrLxiH8--v3Eya_QzxgcT0Jvb673ZdiW1jg893ENhP5zZNYY_J0rZzD5ZmiZcKJySAT3oduhFrwoqzqiNIaVI45M3cLM1YY5m-9xsTRgQpjRRRO8f_U-HmdyT5H_0Bfh8Bqgkcu8pmmQ9laydj2SzccE_5_8PiYKbkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989587274</pqid></control><display><type>article</type><title>Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications</title><source>ScienceDirect Freedom Collection</source><creator>Danilov, Artem ; Tselikov, Gleb ; Wu, Fan ; Kravets, Vasyl G. ; Ozerov, Igor ; Bedu, Frederic ; Grigorenko, Alexander N. ; Kabashin, Andrei V.</creator><creatorcontrib>Danilov, Artem ; Tselikov, Gleb ; Wu, Fan ; Kravets, Vasyl G. ; Ozerov, Igor ; Bedu, Frederic ; Grigorenko, Alexander N. ; Kabashin, Andrei V.</creatorcontrib><description>When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100–200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLRair, PSLRwat for air and water, respectively) and substrate (PSLRsub) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 105 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of nanoscale architectures, including drastic concentration of electric field, possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise the advancement of current state-of-the-art plasmonic biosensing technology toward single molecule label-free detection. •Potential of metamaterials based on nanoparticle arrays in biosensing applications is studied.•Metamaterials can generate ultranarrow surface lattice resonances (down to 2nm FWHM).•Surface lattice resonances demonstrate high sensitivities in spectral and phase interrogations.•Metamaterial transducer presents a versatile platform for ultrasensitive biosensing.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2017.12.001</identifier><identifier>PMID: 29331424</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Attenuated total reflection ; Biosensing Techniques - methods ; Biosensor ; Biotin - chemistry ; Diffraction coupling ; Gold - chemistry ; Metal Nanoparticles - chemistry ; Nanotechnology ; Optics ; Phase sensitivity ; Physics ; Plasmonic metamaterials for biosensing ; Plasmonic surface lattice resonances ; Streptavidin - chemistry ; Surface Plasmon Resonance - methods</subject><ispartof>Biosensors &amp; bioelectronics, 2018-05, Vol.104, p.102-112</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-5d8c934d402b8f4e375aa1e48a9a75f4097e19f03131efd9b186eededc96f56c3</citedby><cites>FETCH-LOGICAL-c434t-5d8c934d402b8f4e375aa1e48a9a75f4097e19f03131efd9b186eededc96f56c3</cites><orcidid>0000-0001-5839-7854 ; 0009-0002-4924-8122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29331424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01660871$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Danilov, Artem</creatorcontrib><creatorcontrib>Tselikov, Gleb</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Kravets, Vasyl G.</creatorcontrib><creatorcontrib>Ozerov, Igor</creatorcontrib><creatorcontrib>Bedu, Frederic</creatorcontrib><creatorcontrib>Grigorenko, Alexander N.</creatorcontrib><creatorcontrib>Kabashin, Andrei V.</creatorcontrib><title>Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100–200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLRair, PSLRwat for air and water, respectively) and substrate (PSLRsub) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 105 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of nanoscale architectures, including drastic concentration of electric field, possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise the advancement of current state-of-the-art plasmonic biosensing technology toward single molecule label-free detection. •Potential of metamaterials based on nanoparticle arrays in biosensing applications is studied.•Metamaterials can generate ultranarrow surface lattice resonances (down to 2nm FWHM).•Surface lattice resonances demonstrate high sensitivities in spectral and phase interrogations.•Metamaterial transducer presents a versatile platform for ultrasensitive biosensing.</description><subject>Attenuated total reflection</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensor</subject><subject>Biotin - chemistry</subject><subject>Diffraction coupling</subject><subject>Gold - chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Nanotechnology</subject><subject>Optics</subject><subject>Phase sensitivity</subject><subject>Physics</subject><subject>Plasmonic metamaterials for biosensing</subject><subject>Plasmonic surface lattice resonances</subject><subject>Streptavidin - chemistry</subject><subject>Surface Plasmon Resonance - methods</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EotvCF-CAcoRDgsd2_ljiUlVAkVbiQs_WrD0Br5I42N6ifnscbemxp5FGv_c08x5j74A3wKH7dGwOPqRGcOgbEA3n8ILtYOhlrYRsX7Id121Xt10nL9hlSkfOeQ-av2YXQksJSqgdc3dTjlgvGGP4W6VTHNFSNWHOvsxIKSy4WEqVX6p1wjSHxdtqpowzZooep6pI8SFVY4jVdg8tyS-_KlzXyVvMPizpDXs14pTo7eO8Yndfv_y8ua33P759v7ne11ZJlevWDVZL5RQXh2FUJPsWEUgNqLFvR8V1T6BHLkECjU4fYOiIHDmru7HtrLxiH8--v3Eya_QzxgcT0Jvb673ZdiW1jg893ENhP5zZNYY_J0rZzD5ZmiZcKJySAT3oduhFrwoqzqiNIaVI45M3cLM1YY5m-9xsTRgQpjRRRO8f_U-HmdyT5H_0Bfh8Bqgkcu8pmmQ9laydj2SzccE_5_8PiYKbkQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Danilov, Artem</creator><creator>Tselikov, Gleb</creator><creator>Wu, Fan</creator><creator>Kravets, Vasyl G.</creator><creator>Ozerov, Igor</creator><creator>Bedu, Frederic</creator><creator>Grigorenko, Alexander N.</creator><creator>Kabashin, Andrei V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5839-7854</orcidid><orcidid>https://orcid.org/0009-0002-4924-8122</orcidid></search><sort><creationdate>20180501</creationdate><title>Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications</title><author>Danilov, Artem ; Tselikov, Gleb ; Wu, Fan ; Kravets, Vasyl G. ; Ozerov, Igor ; Bedu, Frederic ; Grigorenko, Alexander N. ; Kabashin, Andrei V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-5d8c934d402b8f4e375aa1e48a9a75f4097e19f03131efd9b186eededc96f56c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attenuated total reflection</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensor</topic><topic>Biotin - chemistry</topic><topic>Diffraction coupling</topic><topic>Gold - chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Nanotechnology</topic><topic>Optics</topic><topic>Phase sensitivity</topic><topic>Physics</topic><topic>Plasmonic metamaterials for biosensing</topic><topic>Plasmonic surface lattice resonances</topic><topic>Streptavidin - chemistry</topic><topic>Surface Plasmon Resonance - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danilov, Artem</creatorcontrib><creatorcontrib>Tselikov, Gleb</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Kravets, Vasyl G.</creatorcontrib><creatorcontrib>Ozerov, Igor</creatorcontrib><creatorcontrib>Bedu, Frederic</creatorcontrib><creatorcontrib>Grigorenko, Alexander N.</creatorcontrib><creatorcontrib>Kabashin, Andrei V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danilov, Artem</au><au>Tselikov, Gleb</au><au>Wu, Fan</au><au>Kravets, Vasyl G.</au><au>Ozerov, Igor</au><au>Bedu, Frederic</au><au>Grigorenko, Alexander N.</au><au>Kabashin, Andrei V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>104</volume><spage>102</spage><epage>112</epage><pages>102-112</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100–200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLRair, PSLRwat for air and water, respectively) and substrate (PSLRsub) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 105 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of nanoscale architectures, including drastic concentration of electric field, possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise the advancement of current state-of-the-art plasmonic biosensing technology toward single molecule label-free detection. •Potential of metamaterials based on nanoparticle arrays in biosensing applications is studied.•Metamaterials can generate ultranarrow surface lattice resonances (down to 2nm FWHM).•Surface lattice resonances demonstrate high sensitivities in spectral and phase interrogations.•Metamaterial transducer presents a versatile platform for ultrasensitive biosensing.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>29331424</pmid><doi>10.1016/j.bios.2017.12.001</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5839-7854</orcidid><orcidid>https://orcid.org/0009-0002-4924-8122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2018-05, Vol.104, p.102-112
issn 0956-5663
1873-4235
language eng
recordid cdi_hal_primary_oai_HAL_hal_01660871v1
source ScienceDirect Freedom Collection
subjects Attenuated total reflection
Biosensing Techniques - methods
Biosensor
Biotin - chemistry
Diffraction coupling
Gold - chemistry
Metal Nanoparticles - chemistry
Nanotechnology
Optics
Phase sensitivity
Physics
Plasmonic metamaterials for biosensing
Plasmonic surface lattice resonances
Streptavidin - chemistry
Surface Plasmon Resonance - methods
title Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-narrow%20surface%20lattice%20resonances%20in%20plasmonic%20metamaterial%20arrays%20for%20biosensing%20applications&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Danilov,%20Artem&rft.date=2018-05-01&rft.volume=104&rft.spage=102&rft.epage=112&rft.pages=102-112&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2017.12.001&rft_dat=%3Cproquest_hal_p%3E1989587274%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-5d8c934d402b8f4e375aa1e48a9a75f4097e19f03131efd9b186eededc96f56c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989587274&rft_id=info:pmid/29331424&rfr_iscdi=true