Loading…

Multiphysics Model of a Fluorine Electrolysis Cell

Fluorine production results from the electrolysis of hydrogen fluoride‐based molten salts. This process involves several intimately related phenomena, including two‐phase flow, species transport, electrokinetics, and heat transfer. A multiphysics model was built in order to fully simulate this proce...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering & technology 2017-05, Vol.40 (5), p.854-861
Main Authors: Vukasin, Julien, Crassous, Isabelle, Morel, Bertrand, Sanchez-Marcano, José
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4211-c0fa781c7b98ad4788aa311d621e7a37e64c26f17f514668c3892aa6e55c12243
cites cdi_FETCH-LOGICAL-c4211-c0fa781c7b98ad4788aa311d621e7a37e64c26f17f514668c3892aa6e55c12243
container_end_page 861
container_issue 5
container_start_page 854
container_title Chemical engineering & technology
container_volume 40
creator Vukasin, Julien
Crassous, Isabelle
Morel, Bertrand
Sanchez-Marcano, José
description Fluorine production results from the electrolysis of hydrogen fluoride‐based molten salts. This process involves several intimately related phenomena, including two‐phase flow, species transport, electrokinetics, and heat transfer. A multiphysics model was built in order to fully simulate this process and simulation results are compared to experimental data. The emphasis is placed on the process of solidification of the electrolyte on the cooling system and on mass transport close to the cathode. A complex link between bubble generation at the electrodes and species consumption has been highlighted. Gaseous fluorine production is fundamental for the nuclear industry as it is used to produce uranium hexafluoride. A model was built to simulate the main phenomena involved in fluorine electrolysis. Experiments were carried out and comparisons with simulated results were drawn to validate the model. It was then possible to better understand the species transport close to the electrode surfaces.
doi_str_mv 10.1002/ceat.201600591
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01670266v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920460233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4211-c0fa781c7b98ad4788aa311d621e7a37e64c26f17f514668c3892aa6e55c12243</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAgCs7p1XPBix4630vTpDmOsjlhw8s8h5ilrCNbZrIq--_NqCh48RQSfl947yPkFmGEAPTRWH0YUUAOUEo8IwMsKeYMaXlOBiALyEWJ_JJcxbgBAEyXAaGLzh3a_foYWxOzhV9Zl_km09nUdT60O5tNnDWH4F0SMautc9fkotEu2pvvc0hep5NlPcvnL0_P9XieG0YRcwONFhUa8SYrvWKiqrQuEFecohW6EJYzQ3mDoimRcV6ZopJUa27L0iClrBiSh_7ftXZqH9qtDkfldatm47k6vaVVBVDOPzDZ-97ug3_vbDyobRtNGlbvrO-iQgkMZYWyTPTuD934LuzSJklRYBxoUSQ16pUJPsZgm58JENSpbnWqW_3UnQKyD3y2zh7_0aqejJe_2S9tyoAX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920460233</pqid></control><display><type>article</type><title>Multiphysics Model of a Fluorine Electrolysis Cell</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Vukasin, Julien ; Crassous, Isabelle ; Morel, Bertrand ; Sanchez-Marcano, José</creator><creatorcontrib>Vukasin, Julien ; Crassous, Isabelle ; Morel, Bertrand ; Sanchez-Marcano, José</creatorcontrib><description>Fluorine production results from the electrolysis of hydrogen fluoride‐based molten salts. This process involves several intimately related phenomena, including two‐phase flow, species transport, electrokinetics, and heat transfer. A multiphysics model was built in order to fully simulate this process and simulation results are compared to experimental data. The emphasis is placed on the process of solidification of the electrolyte on the cooling system and on mass transport close to the cathode. A complex link between bubble generation at the electrodes and species consumption has been highlighted. Gaseous fluorine production is fundamental for the nuclear industry as it is used to produce uranium hexafluoride. A model was built to simulate the main phenomena involved in fluorine electrolysis. Experiments were carried out and comparisons with simulated results were drawn to validate the model. It was then possible to better understand the species transport close to the electrode surfaces.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201600591</identifier><language>eng</language><publisher>Frankfurt: Wiley Subscription Services, Inc</publisher><subject>Bubbles ; Chemical and Process Engineering ; Computer simulation ; Construction ; Consumption ; Cooling systems ; Electrodes ; Electrokinetics ; Electrolysis ; Electrolytic cells ; Engineering Sciences ; Fluorine ; Gaseous fluorine ; Heat transfer ; Hydrogen fluoride ; Mass transport ; Modeling ; Molten salts ; Solidification ; Transport ; Two‐phase flow</subject><ispartof>Chemical engineering &amp; technology, 2017-05, Vol.40 (5), p.854-861</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4211-c0fa781c7b98ad4788aa311d621e7a37e64c26f17f514668c3892aa6e55c12243</citedby><cites>FETCH-LOGICAL-c4211-c0fa781c7b98ad4788aa311d621e7a37e64c26f17f514668c3892aa6e55c12243</cites><orcidid>0000-0003-1783-2092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.umontpellier.fr/hal-01670266$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vukasin, Julien</creatorcontrib><creatorcontrib>Crassous, Isabelle</creatorcontrib><creatorcontrib>Morel, Bertrand</creatorcontrib><creatorcontrib>Sanchez-Marcano, José</creatorcontrib><title>Multiphysics Model of a Fluorine Electrolysis Cell</title><title>Chemical engineering &amp; technology</title><description>Fluorine production results from the electrolysis of hydrogen fluoride‐based molten salts. This process involves several intimately related phenomena, including two‐phase flow, species transport, electrokinetics, and heat transfer. A multiphysics model was built in order to fully simulate this process and simulation results are compared to experimental data. The emphasis is placed on the process of solidification of the electrolyte on the cooling system and on mass transport close to the cathode. A complex link between bubble generation at the electrodes and species consumption has been highlighted. Gaseous fluorine production is fundamental for the nuclear industry as it is used to produce uranium hexafluoride. A model was built to simulate the main phenomena involved in fluorine electrolysis. Experiments were carried out and comparisons with simulated results were drawn to validate the model. It was then possible to better understand the species transport close to the electrode surfaces.</description><subject>Bubbles</subject><subject>Chemical and Process Engineering</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Consumption</subject><subject>Cooling systems</subject><subject>Electrodes</subject><subject>Electrokinetics</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Engineering Sciences</subject><subject>Fluorine</subject><subject>Gaseous fluorine</subject><subject>Heat transfer</subject><subject>Hydrogen fluoride</subject><subject>Mass transport</subject><subject>Modeling</subject><subject>Molten salts</subject><subject>Solidification</subject><subject>Transport</subject><subject>Two‐phase flow</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0MFLwzAUBvAgCs7p1XPBix4630vTpDmOsjlhw8s8h5ilrCNbZrIq--_NqCh48RQSfl947yPkFmGEAPTRWH0YUUAOUEo8IwMsKeYMaXlOBiALyEWJ_JJcxbgBAEyXAaGLzh3a_foYWxOzhV9Zl_km09nUdT60O5tNnDWH4F0SMautc9fkotEu2pvvc0hep5NlPcvnL0_P9XieG0YRcwONFhUa8SYrvWKiqrQuEFecohW6EJYzQ3mDoimRcV6ZopJUa27L0iClrBiSh_7ftXZqH9qtDkfldatm47k6vaVVBVDOPzDZ-97ug3_vbDyobRtNGlbvrO-iQgkMZYWyTPTuD934LuzSJklRYBxoUSQ16pUJPsZgm58JENSpbnWqW_3UnQKyD3y2zh7_0aqejJe_2S9tyoAX</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Vukasin, Julien</creator><creator>Crassous, Isabelle</creator><creator>Morel, Bertrand</creator><creator>Sanchez-Marcano, José</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1783-2092</orcidid></search><sort><creationdate>201705</creationdate><title>Multiphysics Model of a Fluorine Electrolysis Cell</title><author>Vukasin, Julien ; Crassous, Isabelle ; Morel, Bertrand ; Sanchez-Marcano, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4211-c0fa781c7b98ad4788aa311d621e7a37e64c26f17f514668c3892aa6e55c12243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bubbles</topic><topic>Chemical and Process Engineering</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Consumption</topic><topic>Cooling systems</topic><topic>Electrodes</topic><topic>Electrokinetics</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Engineering Sciences</topic><topic>Fluorine</topic><topic>Gaseous fluorine</topic><topic>Heat transfer</topic><topic>Hydrogen fluoride</topic><topic>Mass transport</topic><topic>Modeling</topic><topic>Molten salts</topic><topic>Solidification</topic><topic>Transport</topic><topic>Two‐phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vukasin, Julien</creatorcontrib><creatorcontrib>Crassous, Isabelle</creatorcontrib><creatorcontrib>Morel, Bertrand</creatorcontrib><creatorcontrib>Sanchez-Marcano, José</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vukasin, Julien</au><au>Crassous, Isabelle</au><au>Morel, Bertrand</au><au>Sanchez-Marcano, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphysics Model of a Fluorine Electrolysis Cell</atitle><jtitle>Chemical engineering &amp; technology</jtitle><date>2017-05</date><risdate>2017</risdate><volume>40</volume><issue>5</issue><spage>854</spage><epage>861</epage><pages>854-861</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>Fluorine production results from the electrolysis of hydrogen fluoride‐based molten salts. This process involves several intimately related phenomena, including two‐phase flow, species transport, electrokinetics, and heat transfer. A multiphysics model was built in order to fully simulate this process and simulation results are compared to experimental data. The emphasis is placed on the process of solidification of the electrolyte on the cooling system and on mass transport close to the cathode. A complex link between bubble generation at the electrodes and species consumption has been highlighted. Gaseous fluorine production is fundamental for the nuclear industry as it is used to produce uranium hexafluoride. A model was built to simulate the main phenomena involved in fluorine electrolysis. Experiments were carried out and comparisons with simulated results were drawn to validate the model. It was then possible to better understand the species transport close to the electrode surfaces.</abstract><cop>Frankfurt</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ceat.201600591</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1783-2092</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2017-05, Vol.40 (5), p.854-861
issn 0930-7516
1521-4125
language eng
recordid cdi_hal_primary_oai_HAL_hal_01670266v1
source Wiley-Blackwell Read & Publish Collection
subjects Bubbles
Chemical and Process Engineering
Computer simulation
Construction
Consumption
Cooling systems
Electrodes
Electrokinetics
Electrolysis
Electrolytic cells
Engineering Sciences
Fluorine
Gaseous fluorine
Heat transfer
Hydrogen fluoride
Mass transport
Modeling
Molten salts
Solidification
Transport
Two‐phase flow
title Multiphysics Model of a Fluorine Electrolysis Cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphysics%20Model%20of%20a%20Fluorine%20Electrolysis%20Cell&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Vukasin,%20Julien&rft.date=2017-05&rft.volume=40&rft.issue=5&rft.spage=854&rft.epage=861&rft.pages=854-861&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201600591&rft_dat=%3Cproquest_hal_p%3E1920460233%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4211-c0fa781c7b98ad4788aa311d621e7a37e64c26f17f514668c3892aa6e55c12243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920460233&rft_id=info:pmid/&rfr_iscdi=true