Loading…

Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules

Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics‐based electrocatalysis in alkaline media at the solid–liquid interface involves complex mechanisms and perfo...

Full description

Saved in:
Bibliographic Details
Published in:Chemphyschem 2017-10, Vol.18 (19), p.2573-2605
Main Authors: Holade, Yaovi, Servat, Karine, Tingry, Sophie, Napporn, Teko W., Remita, Hynd, Cornu, David, Kokoh, K. Boniface
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3
cites cdi_FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3
container_end_page 2605
container_issue 19
container_start_page 2573
container_title Chemphyschem
container_volume 18
creator Holade, Yaovi
Servat, Karine
Tingry, Sophie
Napporn, Teko W.
Remita, Hynd
Cornu, David
Kokoh, K. Boniface
description Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics‐based electrocatalysis in alkaline media at the solid–liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher‐value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods. So sweet! Subtly splitting glycerol/carbohydrates to generate electricity and higher‐value chemicals could help to cut down greenhouse gas emissions. Tuning the mysterious workings of electrocatalysts for the selective oxidation of such fuels in cogeneration energy converters is vital. The complex relationship of the electrode potential, composition, and structure of a catalyst to kinetics, selectivity, and reaction mechanism is interrogated.
doi_str_mv 10.1002/cphc.201700447
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01671655v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1947384998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3</originalsourceid><addsrcrecordid>eNqF0c1LIzEYBvAgLn7tXj1KwIt7aDdvkpnMHMtQt0IXF9RzyCQZOzJNatKpzH9vSmsFL54SXn55yMuD0CWQMRBC_-jVQo8pAUEI5-IInQFn5UjkHI73d05ZdorOY3whhBREwAk6pYVgFFh5hp4mZqOcthG3Dk87q9fBa7VW3RDbiBsf8NTZ8DzgyruNDbH1Ditn8MPg1gu7Nb7B9-FZuVbjfz4F9J2NP9GPRnXR_tqfF-jpdvpYzUbz-7931WQ-0rzgYiRYWQtS14xp3RBDDBcFzU1tDVDaaAWUATeZ4bUoCl0KnmbG6NxYQxJU7AL93uUuVCdXoV2qMEivWjmbzOV2RiAXkGfZBpK92dlV8K-9jWu5bKO2Xaec9X2UUFKaAWSUJ3r9hb74Pri0SVJcsIKXZZHUeKd08DEG2xx-AERuy5HbcuShnPTgah_b10trDvyjjQTKHXhrOzt8Eyer_7PqM_wdk6WanA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947384998</pqid></control><display><type>article</type><title>Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules</title><source>Wiley</source><creator>Holade, Yaovi ; Servat, Karine ; Tingry, Sophie ; Napporn, Teko W. ; Remita, Hynd ; Cornu, David ; Kokoh, K. Boniface</creator><creatorcontrib>Holade, Yaovi ; Servat, Karine ; Tingry, Sophie ; Napporn, Teko W. ; Remita, Hynd ; Cornu, David ; Kokoh, K. Boniface</creatorcontrib><description>Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics‐based electrocatalysis in alkaline media at the solid–liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher‐value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods. So sweet! Subtly splitting glycerol/carbohydrates to generate electricity and higher‐value chemicals could help to cut down greenhouse gas emissions. Tuning the mysterious workings of electrocatalysts for the selective oxidation of such fuels in cogeneration energy converters is vital. The complex relationship of the electrode potential, composition, and structure of a catalyst to kinetics, selectivity, and reaction mechanism is interrogated.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201700447</identifier><identifier>PMID: 28732139</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical reactions ; Chemical Sciences ; Chemical synthesis ; Electrocatalysis ; Electrochemistry ; Electrodes ; Energy conversion ; fuel cells ; heterogeneous catalysis ; Nanomaterials ; nanoparticles ; Organic chemistry ; Oxidation ; Selectivity ; Tactics</subject><ispartof>Chemphyschem, 2017-10, Vol.18 (19), p.2573-2605</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3</citedby><cites>FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3</cites><orcidid>0000-0002-8806-568X ; 0000-0002-5205-3038 ; 0000-0003-3698-9327 ; 0000-0001-5459-4770 ; 0000-0002-5379-7792 ; 0000-0003-1506-7139 ; 0000-0003-2710-382X ; 0000-0001-6311-9330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28732139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.umontpellier.fr/hal-01671655$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Holade, Yaovi</creatorcontrib><creatorcontrib>Servat, Karine</creatorcontrib><creatorcontrib>Tingry, Sophie</creatorcontrib><creatorcontrib>Napporn, Teko W.</creatorcontrib><creatorcontrib>Remita, Hynd</creatorcontrib><creatorcontrib>Cornu, David</creatorcontrib><creatorcontrib>Kokoh, K. Boniface</creatorcontrib><title>Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics‐based electrocatalysis in alkaline media at the solid–liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher‐value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods. So sweet! Subtly splitting glycerol/carbohydrates to generate electricity and higher‐value chemicals could help to cut down greenhouse gas emissions. Tuning the mysterious workings of electrocatalysts for the selective oxidation of such fuels in cogeneration energy converters is vital. The complex relationship of the electrode potential, composition, and structure of a catalyst to kinetics, selectivity, and reaction mechanism is interrogated.</description><subject>Chemical reactions</subject><subject>Chemical Sciences</subject><subject>Chemical synthesis</subject><subject>Electrocatalysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Energy conversion</subject><subject>fuel cells</subject><subject>heterogeneous catalysis</subject><subject>Nanomaterials</subject><subject>nanoparticles</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Selectivity</subject><subject>Tactics</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0c1LIzEYBvAgLn7tXj1KwIt7aDdvkpnMHMtQt0IXF9RzyCQZOzJNatKpzH9vSmsFL54SXn55yMuD0CWQMRBC_-jVQo8pAUEI5-IInQFn5UjkHI73d05ZdorOY3whhBREwAk6pYVgFFh5hp4mZqOcthG3Dk87q9fBa7VW3RDbiBsf8NTZ8DzgyruNDbH1Ditn8MPg1gu7Nb7B9-FZuVbjfz4F9J2NP9GPRnXR_tqfF-jpdvpYzUbz-7931WQ-0rzgYiRYWQtS14xp3RBDDBcFzU1tDVDaaAWUATeZ4bUoCl0KnmbG6NxYQxJU7AL93uUuVCdXoV2qMEivWjmbzOV2RiAXkGfZBpK92dlV8K-9jWu5bKO2Xaec9X2UUFKaAWSUJ3r9hb74Pri0SVJcsIKXZZHUeKd08DEG2xx-AERuy5HbcuShnPTgah_b10trDvyjjQTKHXhrOzt8Eyer_7PqM_wdk6WanA</recordid><startdate>20171006</startdate><enddate>20171006</enddate><creator>Holade, Yaovi</creator><creator>Servat, Karine</creator><creator>Tingry, Sophie</creator><creator>Napporn, Teko W.</creator><creator>Remita, Hynd</creator><creator>Cornu, David</creator><creator>Kokoh, K. Boniface</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8806-568X</orcidid><orcidid>https://orcid.org/0000-0002-5205-3038</orcidid><orcidid>https://orcid.org/0000-0003-3698-9327</orcidid><orcidid>https://orcid.org/0000-0001-5459-4770</orcidid><orcidid>https://orcid.org/0000-0002-5379-7792</orcidid><orcidid>https://orcid.org/0000-0003-1506-7139</orcidid><orcidid>https://orcid.org/0000-0003-2710-382X</orcidid><orcidid>https://orcid.org/0000-0001-6311-9330</orcidid></search><sort><creationdate>20171006</creationdate><title>Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules</title><author>Holade, Yaovi ; Servat, Karine ; Tingry, Sophie ; Napporn, Teko W. ; Remita, Hynd ; Cornu, David ; Kokoh, K. Boniface</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical reactions</topic><topic>Chemical Sciences</topic><topic>Chemical synthesis</topic><topic>Electrocatalysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Energy conversion</topic><topic>fuel cells</topic><topic>heterogeneous catalysis</topic><topic>Nanomaterials</topic><topic>nanoparticles</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Selectivity</topic><topic>Tactics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holade, Yaovi</creatorcontrib><creatorcontrib>Servat, Karine</creatorcontrib><creatorcontrib>Tingry, Sophie</creatorcontrib><creatorcontrib>Napporn, Teko W.</creatorcontrib><creatorcontrib>Remita, Hynd</creatorcontrib><creatorcontrib>Cornu, David</creatorcontrib><creatorcontrib>Kokoh, K. Boniface</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holade, Yaovi</au><au>Servat, Karine</au><au>Tingry, Sophie</au><au>Napporn, Teko W.</au><au>Remita, Hynd</au><au>Cornu, David</au><au>Kokoh, K. Boniface</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2017-10-06</date><risdate>2017</risdate><volume>18</volume><issue>19</issue><spage>2573</spage><epage>2605</epage><pages>2573-2605</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics‐based electrocatalysis in alkaline media at the solid–liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher‐value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods. So sweet! Subtly splitting glycerol/carbohydrates to generate electricity and higher‐value chemicals could help to cut down greenhouse gas emissions. Tuning the mysterious workings of electrocatalysts for the selective oxidation of such fuels in cogeneration energy converters is vital. The complex relationship of the electrode potential, composition, and structure of a catalyst to kinetics, selectivity, and reaction mechanism is interrogated.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28732139</pmid><doi>10.1002/cphc.201700447</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-8806-568X</orcidid><orcidid>https://orcid.org/0000-0002-5205-3038</orcidid><orcidid>https://orcid.org/0000-0003-3698-9327</orcidid><orcidid>https://orcid.org/0000-0001-5459-4770</orcidid><orcidid>https://orcid.org/0000-0002-5379-7792</orcidid><orcidid>https://orcid.org/0000-0003-1506-7139</orcidid><orcidid>https://orcid.org/0000-0003-2710-382X</orcidid><orcidid>https://orcid.org/0000-0001-6311-9330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2017-10, Vol.18 (19), p.2573-2605
issn 1439-4235
1439-7641
language eng
recordid cdi_hal_primary_oai_HAL_hal_01671655v1
source Wiley
subjects Chemical reactions
Chemical Sciences
Chemical synthesis
Electrocatalysis
Electrochemistry
Electrodes
Energy conversion
fuel cells
heterogeneous catalysis
Nanomaterials
nanoparticles
Organic chemistry
Oxidation
Selectivity
Tactics
title Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20Electrocatalysis%20for%20Energy%20Conversion%20and%20Synthesis%20of%20Organic%20Molecules&rft.jtitle=Chemphyschem&rft.au=Holade,%20Yaovi&rft.date=2017-10-06&rft.volume=18&rft.issue=19&rft.spage=2573&rft.epage=2605&rft.pages=2573-2605&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201700447&rft_dat=%3Cproquest_hal_p%3E1947384998%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1947384998&rft_id=info:pmid/28732139&rfr_iscdi=true