Loading…
Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules
Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics‐based electrocatalysis in alkaline media at the solid–liquid interface involves complex mechanisms and perfo...
Saved in:
Published in: | Chemphyschem 2017-10, Vol.18 (19), p.2573-2605 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3 |
container_end_page | 2605 |
container_issue | 19 |
container_start_page | 2573 |
container_title | Chemphyschem |
container_volume | 18 |
creator | Holade, Yaovi Servat, Karine Tingry, Sophie Napporn, Teko W. Remita, Hynd Cornu, David Kokoh, K. Boniface |
description | Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics‐based electrocatalysis in alkaline media at the solid–liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher‐value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods.
So sweet! Subtly splitting glycerol/carbohydrates to generate electricity and higher‐value chemicals could help to cut down greenhouse gas emissions. Tuning the mysterious workings of electrocatalysts for the selective oxidation of such fuels in cogeneration energy converters is vital. The complex relationship of the electrode potential, composition, and structure of a catalyst to kinetics, selectivity, and reaction mechanism is interrogated. |
doi_str_mv | 10.1002/cphc.201700447 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01671655v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1947384998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3</originalsourceid><addsrcrecordid>eNqF0c1LIzEYBvAgLn7tXj1KwIt7aDdvkpnMHMtQt0IXF9RzyCQZOzJNatKpzH9vSmsFL54SXn55yMuD0CWQMRBC_-jVQo8pAUEI5-IInQFn5UjkHI73d05ZdorOY3whhBREwAk6pYVgFFh5hp4mZqOcthG3Dk87q9fBa7VW3RDbiBsf8NTZ8DzgyruNDbH1Ditn8MPg1gu7Nb7B9-FZuVbjfz4F9J2NP9GPRnXR_tqfF-jpdvpYzUbz-7931WQ-0rzgYiRYWQtS14xp3RBDDBcFzU1tDVDaaAWUATeZ4bUoCl0KnmbG6NxYQxJU7AL93uUuVCdXoV2qMEivWjmbzOV2RiAXkGfZBpK92dlV8K-9jWu5bKO2Xaec9X2UUFKaAWSUJ3r9hb74Pri0SVJcsIKXZZHUeKd08DEG2xx-AERuy5HbcuShnPTgah_b10trDvyjjQTKHXhrOzt8Eyer_7PqM_wdk6WanA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947384998</pqid></control><display><type>article</type><title>Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules</title><source>Wiley</source><creator>Holade, Yaovi ; Servat, Karine ; Tingry, Sophie ; Napporn, Teko W. ; Remita, Hynd ; Cornu, David ; Kokoh, K. Boniface</creator><creatorcontrib>Holade, Yaovi ; Servat, Karine ; Tingry, Sophie ; Napporn, Teko W. ; Remita, Hynd ; Cornu, David ; Kokoh, K. Boniface</creatorcontrib><description>Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics‐based electrocatalysis in alkaline media at the solid–liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher‐value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods.
So sweet! Subtly splitting glycerol/carbohydrates to generate electricity and higher‐value chemicals could help to cut down greenhouse gas emissions. Tuning the mysterious workings of electrocatalysts for the selective oxidation of such fuels in cogeneration energy converters is vital. The complex relationship of the electrode potential, composition, and structure of a catalyst to kinetics, selectivity, and reaction mechanism is interrogated.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201700447</identifier><identifier>PMID: 28732139</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical reactions ; Chemical Sciences ; Chemical synthesis ; Electrocatalysis ; Electrochemistry ; Electrodes ; Energy conversion ; fuel cells ; heterogeneous catalysis ; Nanomaterials ; nanoparticles ; Organic chemistry ; Oxidation ; Selectivity ; Tactics</subject><ispartof>Chemphyschem, 2017-10, Vol.18 (19), p.2573-2605</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3</citedby><cites>FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3</cites><orcidid>0000-0002-8806-568X ; 0000-0002-5205-3038 ; 0000-0003-3698-9327 ; 0000-0001-5459-4770 ; 0000-0002-5379-7792 ; 0000-0003-1506-7139 ; 0000-0003-2710-382X ; 0000-0001-6311-9330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28732139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.umontpellier.fr/hal-01671655$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Holade, Yaovi</creatorcontrib><creatorcontrib>Servat, Karine</creatorcontrib><creatorcontrib>Tingry, Sophie</creatorcontrib><creatorcontrib>Napporn, Teko W.</creatorcontrib><creatorcontrib>Remita, Hynd</creatorcontrib><creatorcontrib>Cornu, David</creatorcontrib><creatorcontrib>Kokoh, K. Boniface</creatorcontrib><title>Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics‐based electrocatalysis in alkaline media at the solid–liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher‐value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods.
So sweet! Subtly splitting glycerol/carbohydrates to generate electricity and higher‐value chemicals could help to cut down greenhouse gas emissions. Tuning the mysterious workings of electrocatalysts for the selective oxidation of such fuels in cogeneration energy converters is vital. The complex relationship of the electrode potential, composition, and structure of a catalyst to kinetics, selectivity, and reaction mechanism is interrogated.</description><subject>Chemical reactions</subject><subject>Chemical Sciences</subject><subject>Chemical synthesis</subject><subject>Electrocatalysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Energy conversion</subject><subject>fuel cells</subject><subject>heterogeneous catalysis</subject><subject>Nanomaterials</subject><subject>nanoparticles</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Selectivity</subject><subject>Tactics</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0c1LIzEYBvAgLn7tXj1KwIt7aDdvkpnMHMtQt0IXF9RzyCQZOzJNatKpzH9vSmsFL54SXn55yMuD0CWQMRBC_-jVQo8pAUEI5-IInQFn5UjkHI73d05ZdorOY3whhBREwAk6pYVgFFh5hp4mZqOcthG3Dk87q9fBa7VW3RDbiBsf8NTZ8DzgyruNDbH1Ditn8MPg1gu7Nb7B9-FZuVbjfz4F9J2NP9GPRnXR_tqfF-jpdvpYzUbz-7931WQ-0rzgYiRYWQtS14xp3RBDDBcFzU1tDVDaaAWUATeZ4bUoCl0KnmbG6NxYQxJU7AL93uUuVCdXoV2qMEivWjmbzOV2RiAXkGfZBpK92dlV8K-9jWu5bKO2Xaec9X2UUFKaAWSUJ3r9hb74Pri0SVJcsIKXZZHUeKd08DEG2xx-AERuy5HbcuShnPTgah_b10trDvyjjQTKHXhrOzt8Eyer_7PqM_wdk6WanA</recordid><startdate>20171006</startdate><enddate>20171006</enddate><creator>Holade, Yaovi</creator><creator>Servat, Karine</creator><creator>Tingry, Sophie</creator><creator>Napporn, Teko W.</creator><creator>Remita, Hynd</creator><creator>Cornu, David</creator><creator>Kokoh, K. Boniface</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8806-568X</orcidid><orcidid>https://orcid.org/0000-0002-5205-3038</orcidid><orcidid>https://orcid.org/0000-0003-3698-9327</orcidid><orcidid>https://orcid.org/0000-0001-5459-4770</orcidid><orcidid>https://orcid.org/0000-0002-5379-7792</orcidid><orcidid>https://orcid.org/0000-0003-1506-7139</orcidid><orcidid>https://orcid.org/0000-0003-2710-382X</orcidid><orcidid>https://orcid.org/0000-0001-6311-9330</orcidid></search><sort><creationdate>20171006</creationdate><title>Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules</title><author>Holade, Yaovi ; Servat, Karine ; Tingry, Sophie ; Napporn, Teko W. ; Remita, Hynd ; Cornu, David ; Kokoh, K. Boniface</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical reactions</topic><topic>Chemical Sciences</topic><topic>Chemical synthesis</topic><topic>Electrocatalysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Energy conversion</topic><topic>fuel cells</topic><topic>heterogeneous catalysis</topic><topic>Nanomaterials</topic><topic>nanoparticles</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Selectivity</topic><topic>Tactics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holade, Yaovi</creatorcontrib><creatorcontrib>Servat, Karine</creatorcontrib><creatorcontrib>Tingry, Sophie</creatorcontrib><creatorcontrib>Napporn, Teko W.</creatorcontrib><creatorcontrib>Remita, Hynd</creatorcontrib><creatorcontrib>Cornu, David</creatorcontrib><creatorcontrib>Kokoh, K. Boniface</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holade, Yaovi</au><au>Servat, Karine</au><au>Tingry, Sophie</au><au>Napporn, Teko W.</au><au>Remita, Hynd</au><au>Cornu, David</au><au>Kokoh, K. Boniface</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2017-10-06</date><risdate>2017</risdate><volume>18</volume><issue>19</issue><spage>2573</spage><epage>2605</epage><pages>2573-2605</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics‐based electrocatalysis in alkaline media at the solid–liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher‐value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods.
So sweet! Subtly splitting glycerol/carbohydrates to generate electricity and higher‐value chemicals could help to cut down greenhouse gas emissions. Tuning the mysterious workings of electrocatalysts for the selective oxidation of such fuels in cogeneration energy converters is vital. The complex relationship of the electrode potential, composition, and structure of a catalyst to kinetics, selectivity, and reaction mechanism is interrogated.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28732139</pmid><doi>10.1002/cphc.201700447</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-8806-568X</orcidid><orcidid>https://orcid.org/0000-0002-5205-3038</orcidid><orcidid>https://orcid.org/0000-0003-3698-9327</orcidid><orcidid>https://orcid.org/0000-0001-5459-4770</orcidid><orcidid>https://orcid.org/0000-0002-5379-7792</orcidid><orcidid>https://orcid.org/0000-0003-1506-7139</orcidid><orcidid>https://orcid.org/0000-0003-2710-382X</orcidid><orcidid>https://orcid.org/0000-0001-6311-9330</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2017-10, Vol.18 (19), p.2573-2605 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01671655v1 |
source | Wiley |
subjects | Chemical reactions Chemical Sciences Chemical synthesis Electrocatalysis Electrochemistry Electrodes Energy conversion fuel cells heterogeneous catalysis Nanomaterials nanoparticles Organic chemistry Oxidation Selectivity Tactics |
title | Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20Electrocatalysis%20for%20Energy%20Conversion%20and%20Synthesis%20of%20Organic%20Molecules&rft.jtitle=Chemphyschem&rft.au=Holade,%20Yaovi&rft.date=2017-10-06&rft.volume=18&rft.issue=19&rft.spage=2573&rft.epage=2605&rft.pages=2573-2605&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201700447&rft_dat=%3Cproquest_hal_p%3E1947384998%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4847-739b70bb33ccf0d0d47826dbed122fca12314d5d4b788c974fcaddc6ded0826a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1947384998&rft_id=info:pmid/28732139&rfr_iscdi=true |