Loading…
Video Denoising via Empirical Bayesian Estimation of Space-Time Patches
In this paper we present a new patch-based empirical Bayesian video denoising algorithm. The method builds a Bayesian model for each group of similar space-time patches. These patches are not motion-compensated, and therefore avoid the risk of inaccuracies caused by motion estimation errors. The hig...
Saved in:
Published in: | Journal of mathematical imaging and vision 2018, Vol.60 (1), p.70-93 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we present a new patch-based empirical Bayesian video denoising algorithm. The method builds a Bayesian model for each group of similar space-time patches. These patches are not motion-compensated, and therefore avoid the risk of inaccuracies caused by motion estimation errors. The high dimensionality of spatiotemporal patches together with a limited number of available samples poses challenges when estimating the statistics needed for an empirical Bayesian method. We therefore assume that groups of similar patches have a low intrinsic dimensionality, leading to a
spiked covariance model
. Based on theoretical results about the estimation of spiked covariance matrices, we propose estimators of the eigenvalues of the a priori covariance in high-dimensional spaces as simple corrections of the eigenvalues of the sample covariance matrix. We demonstrate empirically that these estimators lead to better empirical Wiener filters. A comparison on classic benchmark videos demonstrates improved visual quality and an increased PSNR with respect to state-of-the-art video denoising methods. |
---|---|
ISSN: | 0924-9907 1573-7683 |
DOI: | 10.1007/s10851-017-0742-4 |