Loading…

Prediction of Effective Properties of Porous Carbon Electrodes from a Parametric 3D Random Morphological Model

Pore structures have a major impact on the transport and electrical properties of electrochemical devices, such as batteries and electric double-layer capacitors (EDLCs). In this work we are concerned with the prediction of the electrical conductivity, ion diffusivity and volumetric capacitance of E...

Full description

Saved in:
Bibliographic Details
Published in:Transport in porous media 2017-10, Vol.120 (1), p.141-165
Main Authors: Prill, Torben, Jeulin, Dominique, Willot, François, Balach, Juan, Soldera, Flavio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pore structures have a major impact on the transport and electrical properties of electrochemical devices, such as batteries and electric double-layer capacitors (EDLCs). In this work we are concerned with the prediction of the electrical conductivity, ion diffusivity and volumetric capacitance of EDLC electrodes, manufactured from hierarchically porous carbons. To investigate the dependence of the effective properties on the pore structures, we use a structurally resolved parametric model of a random medium. Our approach starts from 3D FIB-SEM imaging, combined with automatic segmentation. Then, a random set model is fitted to the segmented structures and the effective transport properties are predicted using full field simulations by iterations of FFT on 3D pore space images and calculations based on the geometric properties of the structure model. A parameter study of the model is used to investigate the sensitivity of the effective conductivity and diffusivity to changes in the model parameters. Finally, we investigate the volumetric capacitance of the EDLC electrodes with a geometric model, make a comparison with experimental measurements and do a parameter study to suggest improved microstructures.
ISSN:0169-3913
1573-1634
DOI:10.1007/s11242-017-0913-1