Loading…

Use of electrochemical impedance spectroscopy for determining the diffusion layer thickness at the surface of ion-exchange membranes

Three ion-exchange membranes (an AMX homogeneous anion-exchange membrane, a MK-40 heterogeneous cation-exchange membrane, and a Nafion-117 homogeneous cation-exchange membrane) have been studied by electrochemical impedance spectroscopy. Processing of the experimental impedance spectra according to...

Full description

Saved in:
Bibliographic Details
Published in:Petroleum chemistry 2012-12, Vol.52 (8), p.614-624
Main Authors: Kozmai, A. E., Nikonenko, V. V., Pismenskaya, N. D., Mareev, S. A., Belova, E. I., Sistat, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-521f6dba5739b38f0f5a68c9c54a3f070bdcc04cba24864179138903878734143
cites cdi_FETCH-LOGICAL-c361t-521f6dba5739b38f0f5a68c9c54a3f070bdcc04cba24864179138903878734143
container_end_page 624
container_issue 8
container_start_page 614
container_title Petroleum chemistry
container_volume 52
creator Kozmai, A. E.
Nikonenko, V. V.
Pismenskaya, N. D.
Mareev, S. A.
Belova, E. I.
Sistat, P.
description Three ion-exchange membranes (an AMX homogeneous anion-exchange membrane, a MK-40 heterogeneous cation-exchange membrane, and a Nafion-117 homogeneous cation-exchange membrane) have been studied by electrochemical impedance spectroscopy. Processing of the experimental impedance spectra according to the model developed previously has made it possible to find the Nernst diffusion boundary layer (DBL) thickness δ as a function of current density. The behavior of the AMX membrane has been shown to be close to the “ideal” one described by the model: the impedance spectrum of the membrane is close to the theoretical spectrum and the value of δ is only slightly smaller than the quantity δ Lev calculated by the Leveque equation derived in terms of classical convective diffusion theory. The behavior of the MK-40 and Nafion membranes markedly differs from the “ideal” behavior: the reactive component of the impedance in the region of medium frequencies corresponding to the maximum point in the low-frequency range of a Warburg type finite-length impedance spectrum is significantly lower than its theoretically predicted value. The value of δ is less than δ Lev even for underlimiting currents, and the deviation increases with the increasing current density. This specific behavior of the membranes correlate well with the voltammetry data. The behavior of the studied membranes is associated with the surface properties: the heterogeneity (case of MK-40) and, especially, high hydrophobicity of the (Nafion-117) surface facilitate the development of electroconvection. Homogeneity and high hydrophilicity of the surface of the AMX membrane determine its behavior, which is close to the ideal.
doi_str_mv 10.1134/S0965544112080099
format article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01690103v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A376272566</galeid><sourcerecordid>A376272566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-521f6dba5739b38f0f5a68c9c54a3f070bdcc04cba24864179138903878734143</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVpoZO0P6A7bbNwqms9bC2HkBcMZJFmbWT5akapLQ2Sp3T2-eGRZ0o3haKF4Jzv6KJzCfkG7BqAi-_PTCsphQCoWcuY1h_ICqSUlaq5_khWi10t_mdykfMrY9CA4Cvy9pKRRkdxRDunaHc4eWtG6qc9DiZYpHl_crKN-yN1MdEBZ0yTDz5s6bxDOnjnDtnHQEdzxFQ0b38GzJma-QTkQ3LGnsYUqsLfdmfCFumEU59MIb-QT86MGb_-uS_Jy93tj5uHavN0_3iz3lSWK5grWYNTQ29kw3XPW8ecNKq12kphuGMN6wdrmbC9qUWrBDQaeKsZb5u24aJ895Jcnd_dmbHbJz-ZdOyi8d3DetMtGgOlGTD-Cwp7fWa3ZsTOBxfnZGw5w9JQDOh80de8UXVTS6VKAM4BW8rKCd3fCcC6ZUfdPzsqmfqcyYUtlaTuNR5SKB38J_QOdBiULw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Use of electrochemical impedance spectroscopy for determining the diffusion layer thickness at the surface of ion-exchange membranes</title><source>EBSCOhost Business Source Ultimate</source><source>Springer Nature</source><creator>Kozmai, A. E. ; Nikonenko, V. V. ; Pismenskaya, N. D. ; Mareev, S. A. ; Belova, E. I. ; Sistat, P.</creator><creatorcontrib>Kozmai, A. E. ; Nikonenko, V. V. ; Pismenskaya, N. D. ; Mareev, S. A. ; Belova, E. I. ; Sistat, P.</creatorcontrib><description>Three ion-exchange membranes (an AMX homogeneous anion-exchange membrane, a MK-40 heterogeneous cation-exchange membrane, and a Nafion-117 homogeneous cation-exchange membrane) have been studied by electrochemical impedance spectroscopy. Processing of the experimental impedance spectra according to the model developed previously has made it possible to find the Nernst diffusion boundary layer (DBL) thickness δ as a function of current density. The behavior of the AMX membrane has been shown to be close to the “ideal” one described by the model: the impedance spectrum of the membrane is close to the theoretical spectrum and the value of δ is only slightly smaller than the quantity δ Lev calculated by the Leveque equation derived in terms of classical convective diffusion theory. The behavior of the MK-40 and Nafion membranes markedly differs from the “ideal” behavior: the reactive component of the impedance in the region of medium frequencies corresponding to the maximum point in the low-frequency range of a Warburg type finite-length impedance spectrum is significantly lower than its theoretically predicted value. The value of δ is less than δ Lev even for underlimiting currents, and the deviation increases with the increasing current density. This specific behavior of the membranes correlate well with the voltammetry data. The behavior of the studied membranes is associated with the surface properties: the heterogeneity (case of MK-40) and, especially, high hydrophobicity of the (Nafion-117) surface facilitate the development of electroconvection. Homogeneity and high hydrophilicity of the surface of the AMX membrane determine its behavior, which is close to the ideal.</description><identifier>ISSN: 0965-5441</identifier><identifier>EISSN: 1555-6239</identifier><identifier>DOI: 10.1134/S0965544112080099</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Analysis ; Chemical properties ; Chemical Sciences ; Chemistry ; Chemistry and Materials Science ; Industrial Chemistry/Chemical Engineering ; Spectrum analysis</subject><ispartof>Petroleum chemistry, 2012-12, Vol.52 (8), p.614-624</ispartof><rights>Pleiades Publishing, Ltd. 2012</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-521f6dba5739b38f0f5a68c9c54a3f070bdcc04cba24864179138903878734143</citedby><cites>FETCH-LOGICAL-c361t-521f6dba5739b38f0f5a68c9c54a3f070bdcc04cba24864179138903878734143</cites><orcidid>0000-0001-8757-4274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.umontpellier.fr/hal-01690103$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kozmai, A. E.</creatorcontrib><creatorcontrib>Nikonenko, V. V.</creatorcontrib><creatorcontrib>Pismenskaya, N. D.</creatorcontrib><creatorcontrib>Mareev, S. A.</creatorcontrib><creatorcontrib>Belova, E. I.</creatorcontrib><creatorcontrib>Sistat, P.</creatorcontrib><title>Use of electrochemical impedance spectroscopy for determining the diffusion layer thickness at the surface of ion-exchange membranes</title><title>Petroleum chemistry</title><addtitle>Pet. Chem</addtitle><description>Three ion-exchange membranes (an AMX homogeneous anion-exchange membrane, a MK-40 heterogeneous cation-exchange membrane, and a Nafion-117 homogeneous cation-exchange membrane) have been studied by electrochemical impedance spectroscopy. Processing of the experimental impedance spectra according to the model developed previously has made it possible to find the Nernst diffusion boundary layer (DBL) thickness δ as a function of current density. The behavior of the AMX membrane has been shown to be close to the “ideal” one described by the model: the impedance spectrum of the membrane is close to the theoretical spectrum and the value of δ is only slightly smaller than the quantity δ Lev calculated by the Leveque equation derived in terms of classical convective diffusion theory. The behavior of the MK-40 and Nafion membranes markedly differs from the “ideal” behavior: the reactive component of the impedance in the region of medium frequencies corresponding to the maximum point in the low-frequency range of a Warburg type finite-length impedance spectrum is significantly lower than its theoretically predicted value. The value of δ is less than δ Lev even for underlimiting currents, and the deviation increases with the increasing current density. This specific behavior of the membranes correlate well with the voltammetry data. The behavior of the studied membranes is associated with the surface properties: the heterogeneity (case of MK-40) and, especially, high hydrophobicity of the (Nafion-117) surface facilitate the development of electroconvection. Homogeneity and high hydrophilicity of the surface of the AMX membrane determine its behavior, which is close to the ideal.</description><subject>Analysis</subject><subject>Chemical properties</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Spectrum analysis</subject><issn>0965-5441</issn><issn>1555-6239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUtr3DAUhUVpoZO0P6A7bbNwqms9bC2HkBcMZJFmbWT5akapLQ2Sp3T2-eGRZ0o3haKF4Jzv6KJzCfkG7BqAi-_PTCsphQCoWcuY1h_ICqSUlaq5_khWi10t_mdykfMrY9CA4Cvy9pKRRkdxRDunaHc4eWtG6qc9DiZYpHl_crKN-yN1MdEBZ0yTDz5s6bxDOnjnDtnHQEdzxFQ0b38GzJma-QTkQ3LGnsYUqsLfdmfCFumEU59MIb-QT86MGb_-uS_Jy93tj5uHavN0_3iz3lSWK5grWYNTQ29kw3XPW8ecNKq12kphuGMN6wdrmbC9qUWrBDQaeKsZb5u24aJ895Jcnd_dmbHbJz-ZdOyi8d3DetMtGgOlGTD-Cwp7fWa3ZsTOBxfnZGw5w9JQDOh80de8UXVTS6VKAM4BW8rKCd3fCcC6ZUfdPzsqmfqcyYUtlaTuNR5SKB38J_QOdBiULw</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Kozmai, A. E.</creator><creator>Nikonenko, V. V.</creator><creator>Pismenskaya, N. D.</creator><creator>Mareev, S. A.</creator><creator>Belova, E. I.</creator><creator>Sistat, P.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer</general><general>MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8757-4274</orcidid></search><sort><creationdate>20121201</creationdate><title>Use of electrochemical impedance spectroscopy for determining the diffusion layer thickness at the surface of ion-exchange membranes</title><author>Kozmai, A. E. ; Nikonenko, V. V. ; Pismenskaya, N. D. ; Mareev, S. A. ; Belova, E. I. ; Sistat, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-521f6dba5739b38f0f5a68c9c54a3f070bdcc04cba24864179138903878734143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Chemical properties</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozmai, A. E.</creatorcontrib><creatorcontrib>Nikonenko, V. V.</creatorcontrib><creatorcontrib>Pismenskaya, N. D.</creatorcontrib><creatorcontrib>Mareev, S. A.</creatorcontrib><creatorcontrib>Belova, E. I.</creatorcontrib><creatorcontrib>Sistat, P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Petroleum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozmai, A. E.</au><au>Nikonenko, V. V.</au><au>Pismenskaya, N. D.</au><au>Mareev, S. A.</au><au>Belova, E. I.</au><au>Sistat, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of electrochemical impedance spectroscopy for determining the diffusion layer thickness at the surface of ion-exchange membranes</atitle><jtitle>Petroleum chemistry</jtitle><stitle>Pet. Chem</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>52</volume><issue>8</issue><spage>614</spage><epage>624</epage><pages>614-624</pages><issn>0965-5441</issn><eissn>1555-6239</eissn><abstract>Three ion-exchange membranes (an AMX homogeneous anion-exchange membrane, a MK-40 heterogeneous cation-exchange membrane, and a Nafion-117 homogeneous cation-exchange membrane) have been studied by electrochemical impedance spectroscopy. Processing of the experimental impedance spectra according to the model developed previously has made it possible to find the Nernst diffusion boundary layer (DBL) thickness δ as a function of current density. The behavior of the AMX membrane has been shown to be close to the “ideal” one described by the model: the impedance spectrum of the membrane is close to the theoretical spectrum and the value of δ is only slightly smaller than the quantity δ Lev calculated by the Leveque equation derived in terms of classical convective diffusion theory. The behavior of the MK-40 and Nafion membranes markedly differs from the “ideal” behavior: the reactive component of the impedance in the region of medium frequencies corresponding to the maximum point in the low-frequency range of a Warburg type finite-length impedance spectrum is significantly lower than its theoretically predicted value. The value of δ is less than δ Lev even for underlimiting currents, and the deviation increases with the increasing current density. This specific behavior of the membranes correlate well with the voltammetry data. The behavior of the studied membranes is associated with the surface properties: the heterogeneity (case of MK-40) and, especially, high hydrophobicity of the (Nafion-117) surface facilitate the development of electroconvection. Homogeneity and high hydrophilicity of the surface of the AMX membrane determine its behavior, which is close to the ideal.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0965544112080099</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8757-4274</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0965-5441
ispartof Petroleum chemistry, 2012-12, Vol.52 (8), p.614-624
issn 0965-5441
1555-6239
language eng
recordid cdi_hal_primary_oai_HAL_hal_01690103v1
source EBSCOhost Business Source Ultimate; Springer Nature
subjects Analysis
Chemical properties
Chemical Sciences
Chemistry
Chemistry and Materials Science
Industrial Chemistry/Chemical Engineering
Spectrum analysis
title Use of electrochemical impedance spectroscopy for determining the diffusion layer thickness at the surface of ion-exchange membranes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20electrochemical%20impedance%20spectroscopy%20for%20determining%20the%20diffusion%20layer%20thickness%20at%20the%20surface%20of%20ion-exchange%20membranes&rft.jtitle=Petroleum%20chemistry&rft.au=Kozmai,%20A.%20E.&rft.date=2012-12-01&rft.volume=52&rft.issue=8&rft.spage=614&rft.epage=624&rft.pages=614-624&rft.issn=0965-5441&rft.eissn=1555-6239&rft_id=info:doi/10.1134/S0965544112080099&rft_dat=%3Cgale_hal_p%3EA376272566%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-521f6dba5739b38f0f5a68c9c54a3f070bdcc04cba24864179138903878734143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A376272566&rfr_iscdi=true