Loading…
The methionine sulfoxide reductases: Catalysis and substrate specificities
Oxidation of Met residues in proteins leads to the formation of methionine sulfoxides (MetSO). Methionine sulfoxide reductases (Msr) are ubiquitous enzymes, which catalyze the reduction of the sulfoxide function of the oxidized methionine residues. In vivo, the role of Msrs is described as essential...
Saved in:
Published in: | Archives of biochemistry and biophysics 2008-06, Vol.474 (2), p.266-273 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oxidation of Met residues in proteins leads to the formation of methionine sulfoxides (MetSO). Methionine sulfoxide reductases (Msr) are ubiquitous enzymes, which catalyze the reduction of the sulfoxide function of the oxidized methionine residues. In vivo, the role of Msrs is described as essential in protecting cells against oxidative damages and to play a role in infection of cells by pathogenic bacteria. There exist two structurally-unrelated classes of Msrs, called MsrA and MsrB, with opposite stereoselectivity towards the S and R isomers of the sulfoxide function, respectively. Both Msrs present a similar three-step catalytic mechanism. The first step, called the reductase step, leads to the formation of a sulfenic acid on the catalytic Cys with the concomitant release of Met. In recent years, significant efforts have been made to characterize structural and molecular factors involved in the catalysis, in particular of the reductase step, and in structural specificities. |
---|---|
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1016/j.abb.2008.02.007 |