Loading…

QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.)

Despite their indisputable importance around the world, the pesticides can be dangerous for a range of species of ecological importance such as honeybees ( Apis mellifera L.). Thus, a particular attention should be paid to their protection, not only for their ecological importance by contributing to...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2018-01, Vol.25 (1), p.896-907
Main Authors: Hamadache, Mabrouk, Benkortbi, Othmane, Hanini, Salah, Amrane, Abdeltif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-15220402f517c115216f3ceb03a7797b44dac338ef65f6957492c2c68e92b6b43
cites cdi_FETCH-LOGICAL-c520t-15220402f517c115216f3ceb03a7797b44dac338ef65f6957492c2c68e92b6b43
container_end_page 907
container_issue 1
container_start_page 896
container_title Environmental science and pollution research international
container_volume 25
creator Hamadache, Mabrouk
Benkortbi, Othmane
Hanini, Salah
Amrane, Abdeltif
description Despite their indisputable importance around the world, the pesticides can be dangerous for a range of species of ecological importance such as honeybees ( Apis mellifera L.). Thus, a particular attention should be paid to their protection, not only for their ecological importance by contributing to the maintenance of wild plant diversity, but also for their economic value as honey producers and crop-pollinating agents. For all these reasons, the environmental protection requires the resort of risk assessment of pesticides. The goal of this work was therefore to develop a validated QSAR model to predict contact acute toxicity (LD 50 ) of 111 pesticides to bees because the QSAR models devoted to this species are very scarce. The analysis of the statistical parameters of this model and those published in the literature shows that our model is more efficient. The QSAR model was assessed according to the OECD principles for the validation of QSAR models. The calculated values for the internal and external validation statistic parameters ( Q 2 and r m 2 ¯ ) are greater than 0.85. In addition to this validation, a mathematical equation derived from the ANN model was used to predict the LD 50 of 20 other pesticides. A good correlation between predicted and experimental values was found ( R 2   =  0.97 and RMSE = 0.14). As a result, this equation could be a means of predicting the toxicity of new pesticides.
doi_str_mv 10.1007/s11356-017-0498-9
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01696986v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986209967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-15220402f517c115216f3ceb03a7797b44dac338ef65f6957492c2c68e92b6b43</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxiMEokvhAbggS1zaQ4rtOHbMbVUBrbQS4t_ZcpzJ1iWJg-0g-h48MLNNWyEkTqOZ-c3nGX9F8ZLRM0apepMYq2pZUqZKKnRT6kfFhkkmSiW0flxsqBaiZJUQR8WzlK4p5VRz9bQ44ppKheCm-P3py_YzGUMHg5_2xE8EXMjhl3dhCHvv7ECiT9-JTQlSGmHKb4md5wE72YeJ5EDyFZA5QufdbSX0xLolA3FhytZlcqvm882hM0PKmHSQCKItYDzZzj6REYbB9xAt2Z2dPi-e9HZI8OIuHhff3r_7en5R7j5-uDzf7kpXc5pLVnNOBeV9zZRjmDHZVw5aWlmltGqF6KyrqgZ6WfdS1_gr3HEnG9C8la2ojovTVffKDmaOfrTxxgTrzcV2Zw41yqSWupE_GbInKzvH8GPBM8zok8Ot7QRhSYbpupZUMVEh-vof9DosccJLkGokmqClQoqtlIshpQj9wwaMmoO9ZrUXl1DmYK_ROPPqTnlpR-geJu79RICvQMLWtIf419P_Vf0DdZ-vRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986209967</pqid></control><display><type>article</type><title>QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.)</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Hamadache, Mabrouk ; Benkortbi, Othmane ; Hanini, Salah ; Amrane, Abdeltif</creator><creatorcontrib>Hamadache, Mabrouk ; Benkortbi, Othmane ; Hanini, Salah ; Amrane, Abdeltif</creatorcontrib><description>Despite their indisputable importance around the world, the pesticides can be dangerous for a range of species of ecological importance such as honeybees ( Apis mellifera L.). Thus, a particular attention should be paid to their protection, not only for their ecological importance by contributing to the maintenance of wild plant diversity, but also for their economic value as honey producers and crop-pollinating agents. For all these reasons, the environmental protection requires the resort of risk assessment of pesticides. The goal of this work was therefore to develop a validated QSAR model to predict contact acute toxicity (LD 50 ) of 111 pesticides to bees because the QSAR models devoted to this species are very scarce. The analysis of the statistical parameters of this model and those published in the literature shows that our model is more efficient. The QSAR model was assessed according to the OECD principles for the validation of QSAR models. The calculated values for the internal and external validation statistic parameters ( Q 2 and r m 2 ¯ ) are greater than 0.85. In addition to this validation, a mathematical equation derived from the ANN model was used to predict the LD 50 of 20 other pesticides. A good correlation between predicted and experimental values was found ( R 2   =  0.97 and RMSE = 0.14). As a result, this equation could be a means of predicting the toxicity of new pesticides.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-017-0498-9</identifier><identifier>PMID: 29067614</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acute toxicity ; Agrochemicals ; Apis mellifera ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bees ; Biodiversity ; Chemical Sciences ; Earth and Environmental Science ; Ecological risk assessment ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental protection ; Environmental science ; Honey ; Mathematical models ; Pesticide toxicity ; Pesticides ; Plant diversity ; Predictions ; Research Article ; Risk assessment ; Statistical analysis ; Structure-activity relationships ; Toxicity ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2018-01, Vol.25 (1), p.896-907</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-15220402f517c115216f3ceb03a7797b44dac338ef65f6957492c2c68e92b6b43</citedby><cites>FETCH-LOGICAL-c520t-15220402f517c115216f3ceb03a7797b44dac338ef65f6957492c2c68e92b6b43</cites><orcidid>0000-0003-2622-2384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1986209967/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1986209967?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,11667,27901,27902,36037,36038,44339,74638</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29067614$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-rennes.hal.science/hal-01696986$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamadache, Mabrouk</creatorcontrib><creatorcontrib>Benkortbi, Othmane</creatorcontrib><creatorcontrib>Hanini, Salah</creatorcontrib><creatorcontrib>Amrane, Abdeltif</creatorcontrib><title>QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.)</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Despite their indisputable importance around the world, the pesticides can be dangerous for a range of species of ecological importance such as honeybees ( Apis mellifera L.). Thus, a particular attention should be paid to their protection, not only for their ecological importance by contributing to the maintenance of wild plant diversity, but also for their economic value as honey producers and crop-pollinating agents. For all these reasons, the environmental protection requires the resort of risk assessment of pesticides. The goal of this work was therefore to develop a validated QSAR model to predict contact acute toxicity (LD 50 ) of 111 pesticides to bees because the QSAR models devoted to this species are very scarce. The analysis of the statistical parameters of this model and those published in the literature shows that our model is more efficient. The QSAR model was assessed according to the OECD principles for the validation of QSAR models. The calculated values for the internal and external validation statistic parameters ( Q 2 and r m 2 ¯ ) are greater than 0.85. In addition to this validation, a mathematical equation derived from the ANN model was used to predict the LD 50 of 20 other pesticides. A good correlation between predicted and experimental values was found ( R 2   =  0.97 and RMSE = 0.14). As a result, this equation could be a means of predicting the toxicity of new pesticides.</description><subject>Acute toxicity</subject><subject>Agrochemicals</subject><subject>Apis mellifera</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bees</subject><subject>Biodiversity</subject><subject>Chemical Sciences</subject><subject>Earth and Environmental Science</subject><subject>Ecological risk assessment</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental protection</subject><subject>Environmental science</subject><subject>Honey</subject><subject>Mathematical models</subject><subject>Pesticide toxicity</subject><subject>Pesticides</subject><subject>Plant diversity</subject><subject>Predictions</subject><subject>Research Article</subject><subject>Risk assessment</subject><subject>Statistical analysis</subject><subject>Structure-activity relationships</subject><subject>Toxicity</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kc9u1DAQxiMEokvhAbggS1zaQ4rtOHbMbVUBrbQS4t_ZcpzJ1iWJg-0g-h48MLNNWyEkTqOZ-c3nGX9F8ZLRM0apepMYq2pZUqZKKnRT6kfFhkkmSiW0flxsqBaiZJUQR8WzlK4p5VRz9bQ44ppKheCm-P3py_YzGUMHg5_2xE8EXMjhl3dhCHvv7ECiT9-JTQlSGmHKb4md5wE72YeJ5EDyFZA5QufdbSX0xLolA3FhytZlcqvm882hM0PKmHSQCKItYDzZzj6REYbB9xAt2Z2dPi-e9HZI8OIuHhff3r_7en5R7j5-uDzf7kpXc5pLVnNOBeV9zZRjmDHZVw5aWlmltGqF6KyrqgZ6WfdS1_gr3HEnG9C8la2ojovTVffKDmaOfrTxxgTrzcV2Zw41yqSWupE_GbInKzvH8GPBM8zok8Ot7QRhSYbpupZUMVEh-vof9DosccJLkGokmqClQoqtlIshpQj9wwaMmoO9ZrUXl1DmYK_ROPPqTnlpR-geJu79RICvQMLWtIf419P_Vf0DdZ-vRQ</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Hamadache, Mabrouk</creator><creator>Benkortbi, Othmane</creator><creator>Hanini, Salah</creator><creator>Amrane, Abdeltif</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2622-2384</orcidid></search><sort><creationdate>20180101</creationdate><title>QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.)</title><author>Hamadache, Mabrouk ; Benkortbi, Othmane ; Hanini, Salah ; Amrane, Abdeltif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-15220402f517c115216f3ceb03a7797b44dac338ef65f6957492c2c68e92b6b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acute toxicity</topic><topic>Agrochemicals</topic><topic>Apis mellifera</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bees</topic><topic>Biodiversity</topic><topic>Chemical Sciences</topic><topic>Earth and Environmental Science</topic><topic>Ecological risk assessment</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental protection</topic><topic>Environmental science</topic><topic>Honey</topic><topic>Mathematical models</topic><topic>Pesticide toxicity</topic><topic>Pesticides</topic><topic>Plant diversity</topic><topic>Predictions</topic><topic>Research Article</topic><topic>Risk assessment</topic><topic>Statistical analysis</topic><topic>Structure-activity relationships</topic><topic>Toxicity</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamadache, Mabrouk</creatorcontrib><creatorcontrib>Benkortbi, Othmane</creatorcontrib><creatorcontrib>Hanini, Salah</creatorcontrib><creatorcontrib>Amrane, Abdeltif</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamadache, Mabrouk</au><au>Benkortbi, Othmane</au><au>Hanini, Salah</au><au>Amrane, Abdeltif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.)</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><spage>896</spage><epage>907</epage><pages>896-907</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Despite their indisputable importance around the world, the pesticides can be dangerous for a range of species of ecological importance such as honeybees ( Apis mellifera L.). Thus, a particular attention should be paid to their protection, not only for their ecological importance by contributing to the maintenance of wild plant diversity, but also for their economic value as honey producers and crop-pollinating agents. For all these reasons, the environmental protection requires the resort of risk assessment of pesticides. The goal of this work was therefore to develop a validated QSAR model to predict contact acute toxicity (LD 50 ) of 111 pesticides to bees because the QSAR models devoted to this species are very scarce. The analysis of the statistical parameters of this model and those published in the literature shows that our model is more efficient. The QSAR model was assessed according to the OECD principles for the validation of QSAR models. The calculated values for the internal and external validation statistic parameters ( Q 2 and r m 2 ¯ ) are greater than 0.85. In addition to this validation, a mathematical equation derived from the ANN model was used to predict the LD 50 of 20 other pesticides. A good correlation between predicted and experimental values was found ( R 2   =  0.97 and RMSE = 0.14). As a result, this equation could be a means of predicting the toxicity of new pesticides.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29067614</pmid><doi>10.1007/s11356-017-0498-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2622-2384</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2018-01, Vol.25 (1), p.896-907
issn 0944-1344
1614-7499
language eng
recordid cdi_hal_primary_oai_HAL_hal_01696986v1
source ABI/INFORM Global; Springer Nature
subjects Acute toxicity
Agrochemicals
Apis mellifera
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Bees
Biodiversity
Chemical Sciences
Earth and Environmental Science
Ecological risk assessment
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental protection
Environmental science
Honey
Mathematical models
Pesticide toxicity
Pesticides
Plant diversity
Predictions
Research Article
Risk assessment
Statistical analysis
Structure-activity relationships
Toxicity
Waste Water Technology
Water Management
Water Pollution Control
title QSAR modeling in ecotoxicological risk assessment: application to the prediction of acute contact toxicity of pesticides on bees (Apis mellifera L.)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QSAR%20modeling%20in%20ecotoxicological%20risk%20assessment:%20application%20to%20the%20prediction%20of%20acute%20contact%20toxicity%20of%20pesticides%20on%20bees%20(Apis%20mellifera%20L.)&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Hamadache,%20Mabrouk&rft.date=2018-01-01&rft.volume=25&rft.issue=1&rft.spage=896&rft.epage=907&rft.pages=896-907&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-017-0498-9&rft_dat=%3Cproquest_hal_p%3E1986209967%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-15220402f517c115216f3ceb03a7797b44dac338ef65f6957492c2c68e92b6b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1986209967&rft_id=info:pmid/29067614&rfr_iscdi=true