Loading…

High temperature gradient calorimetric wall shear stress micro-sensor for flow separation detection

•A MEMS calorimetric sensor for bi-directional wall shear stress measurement is presented.•Thermal and electrical characterizations are performed.•The calibration of the sensor in a wind tunnel is performed.•The sensor is able to detect flow separations in a turbulent flows. The paper describes and...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. A. Physical. 2017-10, Vol.266, p.232-241
Main Authors: Ghouila-Houri, Cécile, Gallas, Quentin, Garnier, Eric, Merlen, Alain, Viard, Romain, Talbi, Abdelkrim, Pernod, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-4caffc715c15621e5891da39a1b502c33267cb236129ecdd85ef0ca4d4ed248f3
cites cdi_FETCH-LOGICAL-c468t-4caffc715c15621e5891da39a1b502c33267cb236129ecdd85ef0ca4d4ed248f3
container_end_page 241
container_issue
container_start_page 232
container_title Sensors and actuators. A. Physical.
container_volume 266
creator Ghouila-Houri, Cécile
Gallas, Quentin
Garnier, Eric
Merlen, Alain
Viard, Romain
Talbi, Abdelkrim
Pernod, Philippe
description •A MEMS calorimetric sensor for bi-directional wall shear stress measurement is presented.•Thermal and electrical characterizations are performed.•The calibration of the sensor in a wind tunnel is performed.•The sensor is able to detect flow separations in a turbulent flows. The paper describes and discusses the design and testing of an efficient and high-sensitivity calorimetric thermal sensor developed for bi-directional wall shear stress measurements in aerodynamic flows. The main technical application targeted is flow separation detection. The measurement principle is based on the forced convective heat transfer from a heater element. The sensor structure is composed of three parallel substrate-free wires presenting a high aspect ratio and supported by periodic perpendicular SiO2 micro-bridges. This hybrid structure takes advantages from both conventional hot-films and hot-wires, ensuring near-wall and non-intrusive measurement, mechanical toughness and thermal insulation to the bulk substrate, and it allowed to add the calorimetric sensor functionality to detect simultaneously the wall shear stress amplitude and direction. The central wire is made of a multilayer structure composed of a heater element (Au/Ti) and a thermistor (Ni/Pt/Ni/Pt/Ni) enabling measurement of the heater temperature and a layer of SiO2 between them for electrical insulation. The upstream and downstream wires are thermistors enabling operation in the calorimetric mode. This design provides a high temperature gradient and a homogeneous temperature distribution along the wires. The sensor operates in both constant current and constant temperature modes, with a feedback on current enabled by uncoupling heating and measurement. Welded on a flexible printed circuit, the sensor was flush mounted on the wall of a turbulent boundary layer wind tunnel. The experiments, conducted in both attached and separated flow configurations, quantify the sensor response to a bi-directional wall shear stress up to 2.4Pa and demonstrate the sensor ability to detect flow separation.
doi_str_mv 10.1016/j.sna.2017.09.030
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01705613v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424717316564</els_id><sourcerecordid>1977212657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-4caffc715c15621e5891da39a1b502c33267cb236129ecdd85ef0ca4d4ed248f3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWP98AG8BTx52zSS7m108laJWKHjRc0iT2TZlu6nJtsVvb5aKRw_DDMN7j5kfIXfAcmBQPW7y2OucM5A5a3Im2BmZQC1FJljVnJMJa3iRFbyQl-Qqxg1jTAgpJ8TM3WpNB9zuMOhhH5CugrYO-4Ea3fngtjgEZ-hRdx2Na9SBxiFgjHTrTPBZxD76QNuxOn-kEXc6BTnfU4sDmnG6IRet7iLe_vZr8vny_DGbZ4v317fZdJGZoqqHrDC6bY2E0kBZccCybsBq0WhYlowbIXglzZKLCniDxtq6xJYZXdgCLS_qVlyTh1PuWndql07X4Vt57dR8ulDjLtFhZQXiAEl7f9Lugv_aYxzUxu9Dn85T0EjJgVelTCo4qdKrMQZs_2KBqZG72qjEXY3cFWtU4p48TycPplcPDoOKJvE0aF1IPJT17h_3DxkFjBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977212657</pqid></control><display><type>article</type><title>High temperature gradient calorimetric wall shear stress micro-sensor for flow separation detection</title><source>ScienceDirect Journals</source><creator>Ghouila-Houri, Cécile ; Gallas, Quentin ; Garnier, Eric ; Merlen, Alain ; Viard, Romain ; Talbi, Abdelkrim ; Pernod, Philippe</creator><creatorcontrib>Ghouila-Houri, Cécile ; Gallas, Quentin ; Garnier, Eric ; Merlen, Alain ; Viard, Romain ; Talbi, Abdelkrim ; Pernod, Philippe</creatorcontrib><description>•A MEMS calorimetric sensor for bi-directional wall shear stress measurement is presented.•Thermal and electrical characterizations are performed.•The calibration of the sensor in a wind tunnel is performed.•The sensor is able to detect flow separations in a turbulent flows. The paper describes and discusses the design and testing of an efficient and high-sensitivity calorimetric thermal sensor developed for bi-directional wall shear stress measurements in aerodynamic flows. The main technical application targeted is flow separation detection. The measurement principle is based on the forced convective heat transfer from a heater element. The sensor structure is composed of three parallel substrate-free wires presenting a high aspect ratio and supported by periodic perpendicular SiO2 micro-bridges. This hybrid structure takes advantages from both conventional hot-films and hot-wires, ensuring near-wall and non-intrusive measurement, mechanical toughness and thermal insulation to the bulk substrate, and it allowed to add the calorimetric sensor functionality to detect simultaneously the wall shear stress amplitude and direction. The central wire is made of a multilayer structure composed of a heater element (Au/Ti) and a thermistor (Ni/Pt/Ni/Pt/Ni) enabling measurement of the heater temperature and a layer of SiO2 between them for electrical insulation. The upstream and downstream wires are thermistors enabling operation in the calorimetric mode. This design provides a high temperature gradient and a homogeneous temperature distribution along the wires. The sensor operates in both constant current and constant temperature modes, with a feedback on current enabled by uncoupling heating and measurement. Welded on a flexible printed circuit, the sensor was flush mounted on the wall of a turbulent boundary layer wind tunnel. The experiments, conducted in both attached and separated flow configurations, quantify the sensor response to a bi-directional wall shear stress up to 2.4Pa and demonstrate the sensor ability to detect flow separation.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2017.09.030</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aerodynamics ; Convective heat transfer ; Electric bridges ; Electric wire ; Electrical insulation ; Engineering Sciences ; Flow control ; Flow separation ; Flow separation detection ; Fluid dynamics ; Fluids mechanics ; Heat measurement ; Heat transfer ; High aspect ratio ; High temperature ; Instrumentation and Detectors ; Mechanics ; MEMS sensors ; Physics ; Platinum ; Separation ; Shear stress ; Silica ; Silicon dioxide ; Studies ; Substrates ; Temperature distribution ; Temperature gradients ; Thermal insulation ; Thermistors ; Turbulence ; Turbulent boundary layer ; Wall shear-stress sensor ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Sensors and actuators. A. Physical., 2017-10, Vol.266, p.232-241</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 15, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-4caffc715c15621e5891da39a1b502c33267cb236129ecdd85ef0ca4d4ed248f3</citedby><cites>FETCH-LOGICAL-c468t-4caffc715c15621e5891da39a1b502c33267cb236129ecdd85ef0ca4d4ed248f3</cites><orcidid>0000-0002-7200-3636 ; 0000-0001-6371-2863 ; 0000-0002-6708-8487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01705613$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghouila-Houri, Cécile</creatorcontrib><creatorcontrib>Gallas, Quentin</creatorcontrib><creatorcontrib>Garnier, Eric</creatorcontrib><creatorcontrib>Merlen, Alain</creatorcontrib><creatorcontrib>Viard, Romain</creatorcontrib><creatorcontrib>Talbi, Abdelkrim</creatorcontrib><creatorcontrib>Pernod, Philippe</creatorcontrib><title>High temperature gradient calorimetric wall shear stress micro-sensor for flow separation detection</title><title>Sensors and actuators. A. Physical.</title><description>•A MEMS calorimetric sensor for bi-directional wall shear stress measurement is presented.•Thermal and electrical characterizations are performed.•The calibration of the sensor in a wind tunnel is performed.•The sensor is able to detect flow separations in a turbulent flows. The paper describes and discusses the design and testing of an efficient and high-sensitivity calorimetric thermal sensor developed for bi-directional wall shear stress measurements in aerodynamic flows. The main technical application targeted is flow separation detection. The measurement principle is based on the forced convective heat transfer from a heater element. The sensor structure is composed of three parallel substrate-free wires presenting a high aspect ratio and supported by periodic perpendicular SiO2 micro-bridges. This hybrid structure takes advantages from both conventional hot-films and hot-wires, ensuring near-wall and non-intrusive measurement, mechanical toughness and thermal insulation to the bulk substrate, and it allowed to add the calorimetric sensor functionality to detect simultaneously the wall shear stress amplitude and direction. The central wire is made of a multilayer structure composed of a heater element (Au/Ti) and a thermistor (Ni/Pt/Ni/Pt/Ni) enabling measurement of the heater temperature and a layer of SiO2 between them for electrical insulation. The upstream and downstream wires are thermistors enabling operation in the calorimetric mode. This design provides a high temperature gradient and a homogeneous temperature distribution along the wires. The sensor operates in both constant current and constant temperature modes, with a feedback on current enabled by uncoupling heating and measurement. Welded on a flexible printed circuit, the sensor was flush mounted on the wall of a turbulent boundary layer wind tunnel. The experiments, conducted in both attached and separated flow configurations, quantify the sensor response to a bi-directional wall shear stress up to 2.4Pa and demonstrate the sensor ability to detect flow separation.</description><subject>Aerodynamics</subject><subject>Convective heat transfer</subject><subject>Electric bridges</subject><subject>Electric wire</subject><subject>Electrical insulation</subject><subject>Engineering Sciences</subject><subject>Flow control</subject><subject>Flow separation</subject><subject>Flow separation detection</subject><subject>Fluid dynamics</subject><subject>Fluids mechanics</subject><subject>Heat measurement</subject><subject>Heat transfer</subject><subject>High aspect ratio</subject><subject>High temperature</subject><subject>Instrumentation and Detectors</subject><subject>Mechanics</subject><subject>MEMS sensors</subject><subject>Physics</subject><subject>Platinum</subject><subject>Separation</subject><subject>Shear stress</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Studies</subject><subject>Substrates</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Thermal insulation</subject><subject>Thermistors</subject><subject>Turbulence</subject><subject>Turbulent boundary layer</subject><subject>Wall shear-stress sensor</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWP98AG8BTx52zSS7m108laJWKHjRc0iT2TZlu6nJtsVvb5aKRw_DDMN7j5kfIXfAcmBQPW7y2OucM5A5a3Im2BmZQC1FJljVnJMJa3iRFbyQl-Qqxg1jTAgpJ8TM3WpNB9zuMOhhH5CugrYO-4Ea3fngtjgEZ-hRdx2Na9SBxiFgjHTrTPBZxD76QNuxOn-kEXc6BTnfU4sDmnG6IRet7iLe_vZr8vny_DGbZ4v317fZdJGZoqqHrDC6bY2E0kBZccCybsBq0WhYlowbIXglzZKLCniDxtq6xJYZXdgCLS_qVlyTh1PuWndql07X4Vt57dR8ulDjLtFhZQXiAEl7f9Lugv_aYxzUxu9Dn85T0EjJgVelTCo4qdKrMQZs_2KBqZG72qjEXY3cFWtU4p48TycPplcPDoOKJvE0aF1IPJT17h_3DxkFjBA</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Ghouila-Houri, Cécile</creator><creator>Gallas, Quentin</creator><creator>Garnier, Eric</creator><creator>Merlen, Alain</creator><creator>Viard, Romain</creator><creator>Talbi, Abdelkrim</creator><creator>Pernod, Philippe</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7200-3636</orcidid><orcidid>https://orcid.org/0000-0001-6371-2863</orcidid><orcidid>https://orcid.org/0000-0002-6708-8487</orcidid></search><sort><creationdate>20171015</creationdate><title>High temperature gradient calorimetric wall shear stress micro-sensor for flow separation detection</title><author>Ghouila-Houri, Cécile ; Gallas, Quentin ; Garnier, Eric ; Merlen, Alain ; Viard, Romain ; Talbi, Abdelkrim ; Pernod, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-4caffc715c15621e5891da39a1b502c33267cb236129ecdd85ef0ca4d4ed248f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerodynamics</topic><topic>Convective heat transfer</topic><topic>Electric bridges</topic><topic>Electric wire</topic><topic>Electrical insulation</topic><topic>Engineering Sciences</topic><topic>Flow control</topic><topic>Flow separation</topic><topic>Flow separation detection</topic><topic>Fluid dynamics</topic><topic>Fluids mechanics</topic><topic>Heat measurement</topic><topic>Heat transfer</topic><topic>High aspect ratio</topic><topic>High temperature</topic><topic>Instrumentation and Detectors</topic><topic>Mechanics</topic><topic>MEMS sensors</topic><topic>Physics</topic><topic>Platinum</topic><topic>Separation</topic><topic>Shear stress</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Studies</topic><topic>Substrates</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Thermal insulation</topic><topic>Thermistors</topic><topic>Turbulence</topic><topic>Turbulent boundary layer</topic><topic>Wall shear-stress sensor</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghouila-Houri, Cécile</creatorcontrib><creatorcontrib>Gallas, Quentin</creatorcontrib><creatorcontrib>Garnier, Eric</creatorcontrib><creatorcontrib>Merlen, Alain</creatorcontrib><creatorcontrib>Viard, Romain</creatorcontrib><creatorcontrib>Talbi, Abdelkrim</creatorcontrib><creatorcontrib>Pernod, Philippe</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghouila-Houri, Cécile</au><au>Gallas, Quentin</au><au>Garnier, Eric</au><au>Merlen, Alain</au><au>Viard, Romain</au><au>Talbi, Abdelkrim</au><au>Pernod, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature gradient calorimetric wall shear stress micro-sensor for flow separation detection</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2017-10-15</date><risdate>2017</risdate><volume>266</volume><spage>232</spage><epage>241</epage><pages>232-241</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>•A MEMS calorimetric sensor for bi-directional wall shear stress measurement is presented.•Thermal and electrical characterizations are performed.•The calibration of the sensor in a wind tunnel is performed.•The sensor is able to detect flow separations in a turbulent flows. The paper describes and discusses the design and testing of an efficient and high-sensitivity calorimetric thermal sensor developed for bi-directional wall shear stress measurements in aerodynamic flows. The main technical application targeted is flow separation detection. The measurement principle is based on the forced convective heat transfer from a heater element. The sensor structure is composed of three parallel substrate-free wires presenting a high aspect ratio and supported by periodic perpendicular SiO2 micro-bridges. This hybrid structure takes advantages from both conventional hot-films and hot-wires, ensuring near-wall and non-intrusive measurement, mechanical toughness and thermal insulation to the bulk substrate, and it allowed to add the calorimetric sensor functionality to detect simultaneously the wall shear stress amplitude and direction. The central wire is made of a multilayer structure composed of a heater element (Au/Ti) and a thermistor (Ni/Pt/Ni/Pt/Ni) enabling measurement of the heater temperature and a layer of SiO2 between them for electrical insulation. The upstream and downstream wires are thermistors enabling operation in the calorimetric mode. This design provides a high temperature gradient and a homogeneous temperature distribution along the wires. The sensor operates in both constant current and constant temperature modes, with a feedback on current enabled by uncoupling heating and measurement. Welded on a flexible printed circuit, the sensor was flush mounted on the wall of a turbulent boundary layer wind tunnel. The experiments, conducted in both attached and separated flow configurations, quantify the sensor response to a bi-directional wall shear stress up to 2.4Pa and demonstrate the sensor ability to detect flow separation.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2017.09.030</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7200-3636</orcidid><orcidid>https://orcid.org/0000-0001-6371-2863</orcidid><orcidid>https://orcid.org/0000-0002-6708-8487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2017-10, Vol.266, p.232-241
issn 0924-4247
1873-3069
language eng
recordid cdi_hal_primary_oai_HAL_hal_01705613v1
source ScienceDirect Journals
subjects Aerodynamics
Convective heat transfer
Electric bridges
Electric wire
Electrical insulation
Engineering Sciences
Flow control
Flow separation
Flow separation detection
Fluid dynamics
Fluids mechanics
Heat measurement
Heat transfer
High aspect ratio
High temperature
Instrumentation and Detectors
Mechanics
MEMS sensors
Physics
Platinum
Separation
Shear stress
Silica
Silicon dioxide
Studies
Substrates
Temperature distribution
Temperature gradients
Thermal insulation
Thermistors
Turbulence
Turbulent boundary layer
Wall shear-stress sensor
Wind tunnel testing
Wind tunnels
title High temperature gradient calorimetric wall shear stress micro-sensor for flow separation detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20gradient%20calorimetric%20wall%20shear%20stress%20micro-sensor%20for%20flow%20separation%20detection&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Ghouila-Houri,%20C%C3%A9cile&rft.date=2017-10-15&rft.volume=266&rft.spage=232&rft.epage=241&rft.pages=232-241&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2017.09.030&rft_dat=%3Cproquest_hal_p%3E1977212657%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-4caffc715c15621e5891da39a1b502c33267cb236129ecdd85ef0ca4d4ed248f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1977212657&rft_id=info:pmid/&rfr_iscdi=true