Loading…

The S-labeling problem: An algorithmic tour

Given a graph G=(V,E) of order n and maximum degree Δ, the NP-complete S-labeling problem consists in finding a labeling of G, i.e. a bijective mapping ϕ:V→{1,2…n}, such that SLϕ(G)=∑uv∈Emin{ϕ(u),ϕ(v)} is minimized. In this paper, we study the S-labeling problem, with a particular focus on algorithm...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2018-09, Vol.246, p.49-61
Main Authors: Fertin, Guillaume, Rusu, Irena, Vialette, Stéphane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193
cites cdi_FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193
container_end_page 61
container_issue
container_start_page 49
container_title Discrete Applied Mathematics
container_volume 246
creator Fertin, Guillaume
Rusu, Irena
Vialette, Stéphane
description Given a graph G=(V,E) of order n and maximum degree Δ, the NP-complete S-labeling problem consists in finding a labeling of G, i.e. a bijective mapping ϕ:V→{1,2…n}, such that SLϕ(G)=∑uv∈Emin{ϕ(u),ϕ(v)} is minimized. In this paper, we study the S-labeling problem, with a particular focus on algorithmic issues. We first give intrinsic properties of optimal labelings, which will prove useful for our algorithmic study. We then provide lower bounds on SLϕ(G), together with a generic greedy algorithm, which collectively allow us to approximate the problem in several classes of graphs—in particular, we obtain constant approximation ratios for regular graphs and bounded degree graphs. We also show that deciding whether there exists a labeling ϕ of G such that SLϕ(G)≤|E|+k is solvable in O∗(22k(2k)!) time, thus fixed-parameterized tractable in k. We finally show that the S-Labeling problem is polynomial-time solvable for two classes of graphs, namely split graphs and (sets of) caterpillars.
doi_str_mv 10.1016/j.dam.2017.07.036
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01710032v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X1730358X</els_id><sourcerecordid>2089865137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193</originalsourceid><addsrcrecordid>eNp9kFtLw0AQhRdRsFZ_gG8Bn0QS99LMbvSpFLVCwQcr-LZs9tJuyKVu0oL_3i0RH4WBYYbvDGcOQtcEZwQTuK8yo5qMYsIzHIvBCZoQwWkKnJNTNIkMpJSIz3N00fcVxpjEaYLu1lubvKe1Km3t202yC11Z2-YhmbeJqjdd8MO28ToZun24RGdO1b29-u1T9PH8tF4s09Xby-tivko1y4shLUFw4MIaxkvHQeUCZkKbgnJhnKEOAHhJZ-VMM-NY7iy4PC80ycE5ykjBpuh2vLtVtdwF36jwLTvl5XK-ksdd_JJgzOiBRPZmZKPxr73tB1lFp220JykWhYCcMB4pMlI6dH0frPs7S7A85icrGfOTx_wkjsUgah5HjY2vHrwNstfettoaH6wepOn8P-ofgZd1HQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089865137</pqid></control><display><type>article</type><title>The S-labeling problem: An algorithmic tour</title><source>Elsevier</source><creator>Fertin, Guillaume ; Rusu, Irena ; Vialette, Stéphane</creator><creatorcontrib>Fertin, Guillaume ; Rusu, Irena ; Vialette, Stéphane</creatorcontrib><description>Given a graph G=(V,E) of order n and maximum degree Δ, the NP-complete S-labeling problem consists in finding a labeling of G, i.e. a bijective mapping ϕ:V→{1,2…n}, such that SLϕ(G)=∑uv∈Emin{ϕ(u),ϕ(v)} is minimized. In this paper, we study the S-labeling problem, with a particular focus on algorithmic issues. We first give intrinsic properties of optimal labelings, which will prove useful for our algorithmic study. We then provide lower bounds on SLϕ(G), together with a generic greedy algorithm, which collectively allow us to approximate the problem in several classes of graphs—in particular, we obtain constant approximation ratios for regular graphs and bounded degree graphs. We also show that deciding whether there exists a labeling ϕ of G such that SLϕ(G)≤|E|+k is solvable in O∗(22k(2k)!) time, thus fixed-parameterized tractable in k. We finally show that the S-Labeling problem is polynomial-time solvable for two classes of graphs, namely split graphs and (sets of) caterpillars.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2017.07.036</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithm ; Applied mathematics ; Caterpillars ; Computer Science ; Data Structures and Algorithms ; Graph algorithms ; Graph labeling ; Graphs ; Greedy algorithms ; Labeling ; Lower bounds</subject><ispartof>Discrete Applied Mathematics, 2018-09, Vol.246, p.49-61</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Sep 10, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193</citedby><cites>FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193</cites><orcidid>0000-0003-2308-6970 ; 0000-0002-8251-2012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01710032$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fertin, Guillaume</creatorcontrib><creatorcontrib>Rusu, Irena</creatorcontrib><creatorcontrib>Vialette, Stéphane</creatorcontrib><title>The S-labeling problem: An algorithmic tour</title><title>Discrete Applied Mathematics</title><description>Given a graph G=(V,E) of order n and maximum degree Δ, the NP-complete S-labeling problem consists in finding a labeling of G, i.e. a bijective mapping ϕ:V→{1,2…n}, such that SLϕ(G)=∑uv∈Emin{ϕ(u),ϕ(v)} is minimized. In this paper, we study the S-labeling problem, with a particular focus on algorithmic issues. We first give intrinsic properties of optimal labelings, which will prove useful for our algorithmic study. We then provide lower bounds on SLϕ(G), together with a generic greedy algorithm, which collectively allow us to approximate the problem in several classes of graphs—in particular, we obtain constant approximation ratios for regular graphs and bounded degree graphs. We also show that deciding whether there exists a labeling ϕ of G such that SLϕ(G)≤|E|+k is solvable in O∗(22k(2k)!) time, thus fixed-parameterized tractable in k. We finally show that the S-Labeling problem is polynomial-time solvable for two classes of graphs, namely split graphs and (sets of) caterpillars.</description><subject>Algorithm</subject><subject>Applied mathematics</subject><subject>Caterpillars</subject><subject>Computer Science</subject><subject>Data Structures and Algorithms</subject><subject>Graph algorithms</subject><subject>Graph labeling</subject><subject>Graphs</subject><subject>Greedy algorithms</subject><subject>Labeling</subject><subject>Lower bounds</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLw0AQhRdRsFZ_gG8Bn0QS99LMbvSpFLVCwQcr-LZs9tJuyKVu0oL_3i0RH4WBYYbvDGcOQtcEZwQTuK8yo5qMYsIzHIvBCZoQwWkKnJNTNIkMpJSIz3N00fcVxpjEaYLu1lubvKe1Km3t202yC11Z2-YhmbeJqjdd8MO28ToZun24RGdO1b29-u1T9PH8tF4s09Xby-tivko1y4shLUFw4MIaxkvHQeUCZkKbgnJhnKEOAHhJZ-VMM-NY7iy4PC80ycE5ykjBpuh2vLtVtdwF36jwLTvl5XK-ksdd_JJgzOiBRPZmZKPxr73tB1lFp220JykWhYCcMB4pMlI6dH0frPs7S7A85icrGfOTx_wkjsUgah5HjY2vHrwNstfettoaH6wepOn8P-ofgZd1HQ</recordid><startdate>20180910</startdate><enddate>20180910</enddate><creator>Fertin, Guillaume</creator><creator>Rusu, Irena</creator><creator>Vialette, Stéphane</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2308-6970</orcidid><orcidid>https://orcid.org/0000-0002-8251-2012</orcidid></search><sort><creationdate>20180910</creationdate><title>The S-labeling problem: An algorithmic tour</title><author>Fertin, Guillaume ; Rusu, Irena ; Vialette, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm</topic><topic>Applied mathematics</topic><topic>Caterpillars</topic><topic>Computer Science</topic><topic>Data Structures and Algorithms</topic><topic>Graph algorithms</topic><topic>Graph labeling</topic><topic>Graphs</topic><topic>Greedy algorithms</topic><topic>Labeling</topic><topic>Lower bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fertin, Guillaume</creatorcontrib><creatorcontrib>Rusu, Irena</creatorcontrib><creatorcontrib>Vialette, Stéphane</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fertin, Guillaume</au><au>Rusu, Irena</au><au>Vialette, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The S-labeling problem: An algorithmic tour</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2018-09-10</date><risdate>2018</risdate><volume>246</volume><spage>49</spage><epage>61</epage><pages>49-61</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Given a graph G=(V,E) of order n and maximum degree Δ, the NP-complete S-labeling problem consists in finding a labeling of G, i.e. a bijective mapping ϕ:V→{1,2…n}, such that SLϕ(G)=∑uv∈Emin{ϕ(u),ϕ(v)} is minimized. In this paper, we study the S-labeling problem, with a particular focus on algorithmic issues. We first give intrinsic properties of optimal labelings, which will prove useful for our algorithmic study. We then provide lower bounds on SLϕ(G), together with a generic greedy algorithm, which collectively allow us to approximate the problem in several classes of graphs—in particular, we obtain constant approximation ratios for regular graphs and bounded degree graphs. We also show that deciding whether there exists a labeling ϕ of G such that SLϕ(G)≤|E|+k is solvable in O∗(22k(2k)!) time, thus fixed-parameterized tractable in k. We finally show that the S-Labeling problem is polynomial-time solvable for two classes of graphs, namely split graphs and (sets of) caterpillars.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2017.07.036</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2308-6970</orcidid><orcidid>https://orcid.org/0000-0002-8251-2012</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2018-09, Vol.246, p.49-61
issn 0166-218X
1872-6771
language eng
recordid cdi_hal_primary_oai_HAL_hal_01710032v1
source Elsevier
subjects Algorithm
Applied mathematics
Caterpillars
Computer Science
Data Structures and Algorithms
Graph algorithms
Graph labeling
Graphs
Greedy algorithms
Labeling
Lower bounds
title The S-labeling problem: An algorithmic tour
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20S-labeling%20problem:%20An%20algorithmic%20tour&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Fertin,%20Guillaume&rft.date=2018-09-10&rft.volume=246&rft.spage=49&rft.epage=61&rft.pages=49-61&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2017.07.036&rft_dat=%3Cproquest_hal_p%3E2089865137%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089865137&rft_id=info:pmid/&rfr_iscdi=true