Loading…
The S-labeling problem: An algorithmic tour
Given a graph G=(V,E) of order n and maximum degree Δ, the NP-complete S-labeling problem consists in finding a labeling of G, i.e. a bijective mapping ϕ:V→{1,2…n}, such that SLϕ(G)=∑uv∈Emin{ϕ(u),ϕ(v)} is minimized. In this paper, we study the S-labeling problem, with a particular focus on algorithm...
Saved in:
Published in: | Discrete Applied Mathematics 2018-09, Vol.246, p.49-61 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193 |
container_end_page | 61 |
container_issue | |
container_start_page | 49 |
container_title | Discrete Applied Mathematics |
container_volume | 246 |
creator | Fertin, Guillaume Rusu, Irena Vialette, Stéphane |
description | Given a graph G=(V,E) of order n and maximum degree Δ, the NP-complete S-labeling problem consists in finding a labeling of G, i.e. a bijective mapping ϕ:V→{1,2…n}, such that SLϕ(G)=∑uv∈Emin{ϕ(u),ϕ(v)} is minimized. In this paper, we study the S-labeling problem, with a particular focus on algorithmic issues. We first give intrinsic properties of optimal labelings, which will prove useful for our algorithmic study. We then provide lower bounds on SLϕ(G), together with a generic greedy algorithm, which collectively allow us to approximate the problem in several classes of graphs—in particular, we obtain constant approximation ratios for regular graphs and bounded degree graphs. We also show that deciding whether there exists a labeling ϕ of G such that SLϕ(G)≤|E|+k is solvable in O∗(22k(2k)!) time, thus fixed-parameterized tractable in k. We finally show that the S-Labeling problem is polynomial-time solvable for two classes of graphs, namely split graphs and (sets of) caterpillars. |
doi_str_mv | 10.1016/j.dam.2017.07.036 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01710032v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X1730358X</els_id><sourcerecordid>2089865137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193</originalsourceid><addsrcrecordid>eNp9kFtLw0AQhRdRsFZ_gG8Bn0QS99LMbvSpFLVCwQcr-LZs9tJuyKVu0oL_3i0RH4WBYYbvDGcOQtcEZwQTuK8yo5qMYsIzHIvBCZoQwWkKnJNTNIkMpJSIz3N00fcVxpjEaYLu1lubvKe1Km3t202yC11Z2-YhmbeJqjdd8MO28ToZun24RGdO1b29-u1T9PH8tF4s09Xby-tivko1y4shLUFw4MIaxkvHQeUCZkKbgnJhnKEOAHhJZ-VMM-NY7iy4PC80ycE5ykjBpuh2vLtVtdwF36jwLTvl5XK-ksdd_JJgzOiBRPZmZKPxr73tB1lFp220JykWhYCcMB4pMlI6dH0frPs7S7A85icrGfOTx_wkjsUgah5HjY2vHrwNstfettoaH6wepOn8P-ofgZd1HQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089865137</pqid></control><display><type>article</type><title>The S-labeling problem: An algorithmic tour</title><source>Elsevier</source><creator>Fertin, Guillaume ; Rusu, Irena ; Vialette, Stéphane</creator><creatorcontrib>Fertin, Guillaume ; Rusu, Irena ; Vialette, Stéphane</creatorcontrib><description>Given a graph G=(V,E) of order n and maximum degree Δ, the NP-complete S-labeling problem consists in finding a labeling of G, i.e. a bijective mapping ϕ:V→{1,2…n}, such that SLϕ(G)=∑uv∈Emin{ϕ(u),ϕ(v)} is minimized. In this paper, we study the S-labeling problem, with a particular focus on algorithmic issues. We first give intrinsic properties of optimal labelings, which will prove useful for our algorithmic study. We then provide lower bounds on SLϕ(G), together with a generic greedy algorithm, which collectively allow us to approximate the problem in several classes of graphs—in particular, we obtain constant approximation ratios for regular graphs and bounded degree graphs. We also show that deciding whether there exists a labeling ϕ of G such that SLϕ(G)≤|E|+k is solvable in O∗(22k(2k)!) time, thus fixed-parameterized tractable in k. We finally show that the S-Labeling problem is polynomial-time solvable for two classes of graphs, namely split graphs and (sets of) caterpillars.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2017.07.036</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithm ; Applied mathematics ; Caterpillars ; Computer Science ; Data Structures and Algorithms ; Graph algorithms ; Graph labeling ; Graphs ; Greedy algorithms ; Labeling ; Lower bounds</subject><ispartof>Discrete Applied Mathematics, 2018-09, Vol.246, p.49-61</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Sep 10, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193</citedby><cites>FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193</cites><orcidid>0000-0003-2308-6970 ; 0000-0002-8251-2012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01710032$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fertin, Guillaume</creatorcontrib><creatorcontrib>Rusu, Irena</creatorcontrib><creatorcontrib>Vialette, Stéphane</creatorcontrib><title>The S-labeling problem: An algorithmic tour</title><title>Discrete Applied Mathematics</title><description>Given a graph G=(V,E) of order n and maximum degree Δ, the NP-complete S-labeling problem consists in finding a labeling of G, i.e. a bijective mapping ϕ:V→{1,2…n}, such that SLϕ(G)=∑uv∈Emin{ϕ(u),ϕ(v)} is minimized. In this paper, we study the S-labeling problem, with a particular focus on algorithmic issues. We first give intrinsic properties of optimal labelings, which will prove useful for our algorithmic study. We then provide lower bounds on SLϕ(G), together with a generic greedy algorithm, which collectively allow us to approximate the problem in several classes of graphs—in particular, we obtain constant approximation ratios for regular graphs and bounded degree graphs. We also show that deciding whether there exists a labeling ϕ of G such that SLϕ(G)≤|E|+k is solvable in O∗(22k(2k)!) time, thus fixed-parameterized tractable in k. We finally show that the S-Labeling problem is polynomial-time solvable for two classes of graphs, namely split graphs and (sets of) caterpillars.</description><subject>Algorithm</subject><subject>Applied mathematics</subject><subject>Caterpillars</subject><subject>Computer Science</subject><subject>Data Structures and Algorithms</subject><subject>Graph algorithms</subject><subject>Graph labeling</subject><subject>Graphs</subject><subject>Greedy algorithms</subject><subject>Labeling</subject><subject>Lower bounds</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLw0AQhRdRsFZ_gG8Bn0QS99LMbvSpFLVCwQcr-LZs9tJuyKVu0oL_3i0RH4WBYYbvDGcOQtcEZwQTuK8yo5qMYsIzHIvBCZoQwWkKnJNTNIkMpJSIz3N00fcVxpjEaYLu1lubvKe1Km3t202yC11Z2-YhmbeJqjdd8MO28ToZun24RGdO1b29-u1T9PH8tF4s09Xby-tivko1y4shLUFw4MIaxkvHQeUCZkKbgnJhnKEOAHhJZ-VMM-NY7iy4PC80ycE5ykjBpuh2vLtVtdwF36jwLTvl5XK-ksdd_JJgzOiBRPZmZKPxr73tB1lFp220JykWhYCcMB4pMlI6dH0frPs7S7A85icrGfOTx_wkjsUgah5HjY2vHrwNstfettoaH6wepOn8P-ofgZd1HQ</recordid><startdate>20180910</startdate><enddate>20180910</enddate><creator>Fertin, Guillaume</creator><creator>Rusu, Irena</creator><creator>Vialette, Stéphane</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2308-6970</orcidid><orcidid>https://orcid.org/0000-0002-8251-2012</orcidid></search><sort><creationdate>20180910</creationdate><title>The S-labeling problem: An algorithmic tour</title><author>Fertin, Guillaume ; Rusu, Irena ; Vialette, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm</topic><topic>Applied mathematics</topic><topic>Caterpillars</topic><topic>Computer Science</topic><topic>Data Structures and Algorithms</topic><topic>Graph algorithms</topic><topic>Graph labeling</topic><topic>Graphs</topic><topic>Greedy algorithms</topic><topic>Labeling</topic><topic>Lower bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fertin, Guillaume</creatorcontrib><creatorcontrib>Rusu, Irena</creatorcontrib><creatorcontrib>Vialette, Stéphane</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fertin, Guillaume</au><au>Rusu, Irena</au><au>Vialette, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The S-labeling problem: An algorithmic tour</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2018-09-10</date><risdate>2018</risdate><volume>246</volume><spage>49</spage><epage>61</epage><pages>49-61</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Given a graph G=(V,E) of order n and maximum degree Δ, the NP-complete S-labeling problem consists in finding a labeling of G, i.e. a bijective mapping ϕ:V→{1,2…n}, such that SLϕ(G)=∑uv∈Emin{ϕ(u),ϕ(v)} is minimized. In this paper, we study the S-labeling problem, with a particular focus on algorithmic issues. We first give intrinsic properties of optimal labelings, which will prove useful for our algorithmic study. We then provide lower bounds on SLϕ(G), together with a generic greedy algorithm, which collectively allow us to approximate the problem in several classes of graphs—in particular, we obtain constant approximation ratios for regular graphs and bounded degree graphs. We also show that deciding whether there exists a labeling ϕ of G such that SLϕ(G)≤|E|+k is solvable in O∗(22k(2k)!) time, thus fixed-parameterized tractable in k. We finally show that the S-Labeling problem is polynomial-time solvable for two classes of graphs, namely split graphs and (sets of) caterpillars.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2017.07.036</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2308-6970</orcidid><orcidid>https://orcid.org/0000-0002-8251-2012</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2018-09, Vol.246, p.49-61 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01710032v1 |
source | Elsevier |
subjects | Algorithm Applied mathematics Caterpillars Computer Science Data Structures and Algorithms Graph algorithms Graph labeling Graphs Greedy algorithms Labeling Lower bounds |
title | The S-labeling problem: An algorithmic tour |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20S-labeling%20problem:%20An%20algorithmic%20tour&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Fertin,%20Guillaume&rft.date=2018-09-10&rft.volume=246&rft.spage=49&rft.epage=61&rft.pages=49-61&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2017.07.036&rft_dat=%3Cproquest_hal_p%3E2089865137%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-b687678ed37bf76a58648cd9278dfd2f6667b24b4c3df35fe6f559c156ff23193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089865137&rft_id=info:pmid/&rfr_iscdi=true |