Loading…
Design and Characterization of an Electrically Powered Single Molecule on Gold
The surface diffusion of individual molecules is of paramount importance in self-assembly processes and catalytic processes. However, the fundamental understanding of molecule diffusion peculiarities considering conformations and adsorption sites remain poorly known at the atomic scale. Here, we pro...
Saved in:
Published in: | ACS nano 2017-10, Vol.11 (10), p.9930-9940 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The surface diffusion of individual molecules is of paramount importance in self-assembly processes and catalytic processes. However, the fundamental understanding of molecule diffusion peculiarities considering conformations and adsorption sites remain poorly known at the atomic scale. Here, we probe the 4′-(4-tolyl)-2,2′:6′,2″-terpyridine adsorbed on the Au(111) herringbone structure combining scanning tunneling microscopy and atomic force microscopy. Molecules are controllably translated by electrons excitations over the reconstruction, except at elbows acting as pinning centers. Experimental data supported by theoretical calculations show the formation of coordination bonds between the molecule and Au atoms of the surface. Using force spectroscopy, we quantify local variation of the surface potential and the lateral force required to move the molecule. We found an elevation of the diffusion barrier at elbows of the reconstruction of ∼100 meV compared to the rest of the surface. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.7b03955 |