Loading…

Search for the Neutron Decay n$\rightarrow$ X+$\gamma$ where X is a dark matter particle

Fornal and Grinstein recently proposed that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods, can be explained by a previously unobserved dark matter decay mode, n→X+γ. We perform a search for this decay mode over the allowed range of energi...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2018, Vol.121 (2)
Main Authors: Tang, Z., Blatnik, M., Broussard, L.J., Choi, J.H., Clayton, S.M., Cude-Woods, C., Currie, S., Fellers, D.E., Fries, E.M., Geltenbort, P., Gonzalez, F., Ito, T.M., Liu, C.Y., Macdonald, S.W.T., Makela, M., Morris, C.L., O'Shaughnessy, C.M., Pattie, R.W., Plaster, B., Salvat, D.J., Saunders, A., Wang, Z., Young, A.R., Zeck, B.A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page
container_title Physical review letters
container_volume 121
creator Tang, Z.
Blatnik, M.
Broussard, L.J.
Choi, J.H.
Clayton, S.M.
Cude-Woods, C.
Currie, S.
Fellers, D.E.
Fries, E.M.
Geltenbort, P.
Gonzalez, F.
Ito, T.M.
Liu, C.Y.
Macdonald, S.W.T.
Makela, M.
Morris, C.L.
O'Shaughnessy, C.M.
Pattie, R.W.
Plaster, B.
Salvat, D.J.
Saunders, A.
Wang, Z.
Young, A.R.
Zeck, B.A.
description Fornal and Grinstein recently proposed that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods, can be explained by a previously unobserved dark matter decay mode, n→X+γ. We perform a search for this decay mode over the allowed range of energies of the monoenergetic γ ray for X to be dark matter. A Compton-suppressed high-purity germanium detector is used to identify γ rays from neutron decay in a nickel-phosphorous-coated stainless-steel bottle. A combination of Monte Carlo and radioactive source calibrations is used to determine the absolute efficiency for detecting γ rays arising from the dark matter decay mode. We exclude the possibility of a sufficiently strong branch to explain the lifetime discrepancy with 97% confidence.
doi_str_mv 10.1103/PhysRevLett.121.022505
format article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01714233v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01714233v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_01714233v13</originalsourceid><addsrcrecordid>eNqVyk1Lw0AQgOFFFIwff0HmkItI4sxua-xR_KCHIqIeciiEIU67q0lTZteW_HsR_AOeXnh4jbkgLInQXb_4Mb7KbiEplWSpRGunOD0wGWE1KyqiyaHJEB0VM8Tq2JzE-ImIZG9uM1O_CWvrYTUoJC_wLN9Jhw08SMsjbPKlhrVPrDrsc6iv8uWa-55z2HtRgRpCBIYP1i_oOSVR2LKm0HZyZo5W3EU5_-upuXx6fL-fF567ZquhZx2bgUMzv1s0v4ZU0cQ6tyP3n_cHxfhNVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Search for the Neutron Decay n$\rightarrow$ X+$\gamma$ where X is a dark matter particle</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Tang, Z. ; Blatnik, M. ; Broussard, L.J. ; Choi, J.H. ; Clayton, S.M. ; Cude-Woods, C. ; Currie, S. ; Fellers, D.E. ; Fries, E.M. ; Geltenbort, P. ; Gonzalez, F. ; Ito, T.M. ; Liu, C.Y. ; Macdonald, S.W.T. ; Makela, M. ; Morris, C.L. ; O'Shaughnessy, C.M. ; Pattie, R.W. ; Plaster, B. ; Salvat, D.J. ; Saunders, A. ; Wang, Z. ; Young, A.R. ; Zeck, B.A.</creator><creatorcontrib>Tang, Z. ; Blatnik, M. ; Broussard, L.J. ; Choi, J.H. ; Clayton, S.M. ; Cude-Woods, C. ; Currie, S. ; Fellers, D.E. ; Fries, E.M. ; Geltenbort, P. ; Gonzalez, F. ; Ito, T.M. ; Liu, C.Y. ; Macdonald, S.W.T. ; Makela, M. ; Morris, C.L. ; O'Shaughnessy, C.M. ; Pattie, R.W. ; Plaster, B. ; Salvat, D.J. ; Saunders, A. ; Wang, Z. ; Young, A.R. ; Zeck, B.A.</creatorcontrib><description>Fornal and Grinstein recently proposed that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods, can be explained by a previously unobserved dark matter decay mode, n→X+γ. We perform a search for this decay mode over the allowed range of energies of the monoenergetic γ ray for X to be dark matter. A Compton-suppressed high-purity germanium detector is used to identify γ rays from neutron decay in a nickel-phosphorous-coated stainless-steel bottle. A combination of Monte Carlo and radioactive source calibrations is used to determine the absolute efficiency for detecting γ rays arising from the dark matter decay mode. We exclude the possibility of a sufficiently strong branch to explain the lifetime discrepancy with 97% confidence.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.121.022505</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Nuclear Experiment ; Physics</subject><ispartof>Physical review letters, 2018, Vol.121 (2)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01714233$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Z.</creatorcontrib><creatorcontrib>Blatnik, M.</creatorcontrib><creatorcontrib>Broussard, L.J.</creatorcontrib><creatorcontrib>Choi, J.H.</creatorcontrib><creatorcontrib>Clayton, S.M.</creatorcontrib><creatorcontrib>Cude-Woods, C.</creatorcontrib><creatorcontrib>Currie, S.</creatorcontrib><creatorcontrib>Fellers, D.E.</creatorcontrib><creatorcontrib>Fries, E.M.</creatorcontrib><creatorcontrib>Geltenbort, P.</creatorcontrib><creatorcontrib>Gonzalez, F.</creatorcontrib><creatorcontrib>Ito, T.M.</creatorcontrib><creatorcontrib>Liu, C.Y.</creatorcontrib><creatorcontrib>Macdonald, S.W.T.</creatorcontrib><creatorcontrib>Makela, M.</creatorcontrib><creatorcontrib>Morris, C.L.</creatorcontrib><creatorcontrib>O'Shaughnessy, C.M.</creatorcontrib><creatorcontrib>Pattie, R.W.</creatorcontrib><creatorcontrib>Plaster, B.</creatorcontrib><creatorcontrib>Salvat, D.J.</creatorcontrib><creatorcontrib>Saunders, A.</creatorcontrib><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Young, A.R.</creatorcontrib><creatorcontrib>Zeck, B.A.</creatorcontrib><title>Search for the Neutron Decay n$\rightarrow$ X+$\gamma$ where X is a dark matter particle</title><title>Physical review letters</title><description>Fornal and Grinstein recently proposed that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods, can be explained by a previously unobserved dark matter decay mode, n→X+γ. We perform a search for this decay mode over the allowed range of energies of the monoenergetic γ ray for X to be dark matter. A Compton-suppressed high-purity germanium detector is used to identify γ rays from neutron decay in a nickel-phosphorous-coated stainless-steel bottle. A combination of Monte Carlo and radioactive source calibrations is used to determine the absolute efficiency for detecting γ rays arising from the dark matter decay mode. We exclude the possibility of a sufficiently strong branch to explain the lifetime discrepancy with 97% confidence.</description><subject>Nuclear Experiment</subject><subject>Physics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqVyk1Lw0AQgOFFFIwff0HmkItI4sxua-xR_KCHIqIeciiEIU67q0lTZteW_HsR_AOeXnh4jbkgLInQXb_4Mb7KbiEplWSpRGunOD0wGWE1KyqiyaHJEB0VM8Tq2JzE-ImIZG9uM1O_CWvrYTUoJC_wLN9Jhw08SMsjbPKlhrVPrDrsc6iv8uWa-55z2HtRgRpCBIYP1i_oOSVR2LKm0HZyZo5W3EU5_-upuXx6fL-fF567ZquhZx2bgUMzv1s0v4ZU0cQ6tyP3n_cHxfhNVA</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Tang, Z.</creator><creator>Blatnik, M.</creator><creator>Broussard, L.J.</creator><creator>Choi, J.H.</creator><creator>Clayton, S.M.</creator><creator>Cude-Woods, C.</creator><creator>Currie, S.</creator><creator>Fellers, D.E.</creator><creator>Fries, E.M.</creator><creator>Geltenbort, P.</creator><creator>Gonzalez, F.</creator><creator>Ito, T.M.</creator><creator>Liu, C.Y.</creator><creator>Macdonald, S.W.T.</creator><creator>Makela, M.</creator><creator>Morris, C.L.</creator><creator>O'Shaughnessy, C.M.</creator><creator>Pattie, R.W.</creator><creator>Plaster, B.</creator><creator>Salvat, D.J.</creator><creator>Saunders, A.</creator><creator>Wang, Z.</creator><creator>Young, A.R.</creator><creator>Zeck, B.A.</creator><general>American Physical Society</general><scope>1XC</scope></search><sort><creationdate>2018</creationdate><title>Search for the Neutron Decay n$\rightarrow$ X+$\gamma$ where X is a dark matter particle</title><author>Tang, Z. ; Blatnik, M. ; Broussard, L.J. ; Choi, J.H. ; Clayton, S.M. ; Cude-Woods, C. ; Currie, S. ; Fellers, D.E. ; Fries, E.M. ; Geltenbort, P. ; Gonzalez, F. ; Ito, T.M. ; Liu, C.Y. ; Macdonald, S.W.T. ; Makela, M. ; Morris, C.L. ; O'Shaughnessy, C.M. ; Pattie, R.W. ; Plaster, B. ; Salvat, D.J. ; Saunders, A. ; Wang, Z. ; Young, A.R. ; Zeck, B.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_01714233v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Nuclear Experiment</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Z.</creatorcontrib><creatorcontrib>Blatnik, M.</creatorcontrib><creatorcontrib>Broussard, L.J.</creatorcontrib><creatorcontrib>Choi, J.H.</creatorcontrib><creatorcontrib>Clayton, S.M.</creatorcontrib><creatorcontrib>Cude-Woods, C.</creatorcontrib><creatorcontrib>Currie, S.</creatorcontrib><creatorcontrib>Fellers, D.E.</creatorcontrib><creatorcontrib>Fries, E.M.</creatorcontrib><creatorcontrib>Geltenbort, P.</creatorcontrib><creatorcontrib>Gonzalez, F.</creatorcontrib><creatorcontrib>Ito, T.M.</creatorcontrib><creatorcontrib>Liu, C.Y.</creatorcontrib><creatorcontrib>Macdonald, S.W.T.</creatorcontrib><creatorcontrib>Makela, M.</creatorcontrib><creatorcontrib>Morris, C.L.</creatorcontrib><creatorcontrib>O'Shaughnessy, C.M.</creatorcontrib><creatorcontrib>Pattie, R.W.</creatorcontrib><creatorcontrib>Plaster, B.</creatorcontrib><creatorcontrib>Salvat, D.J.</creatorcontrib><creatorcontrib>Saunders, A.</creatorcontrib><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Young, A.R.</creatorcontrib><creatorcontrib>Zeck, B.A.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Z.</au><au>Blatnik, M.</au><au>Broussard, L.J.</au><au>Choi, J.H.</au><au>Clayton, S.M.</au><au>Cude-Woods, C.</au><au>Currie, S.</au><au>Fellers, D.E.</au><au>Fries, E.M.</au><au>Geltenbort, P.</au><au>Gonzalez, F.</au><au>Ito, T.M.</au><au>Liu, C.Y.</au><au>Macdonald, S.W.T.</au><au>Makela, M.</au><au>Morris, C.L.</au><au>O'Shaughnessy, C.M.</au><au>Pattie, R.W.</au><au>Plaster, B.</au><au>Salvat, D.J.</au><au>Saunders, A.</au><au>Wang, Z.</au><au>Young, A.R.</au><au>Zeck, B.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Search for the Neutron Decay n$\rightarrow$ X+$\gamma$ where X is a dark matter particle</atitle><jtitle>Physical review letters</jtitle><date>2018</date><risdate>2018</risdate><volume>121</volume><issue>2</issue><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Fornal and Grinstein recently proposed that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods, can be explained by a previously unobserved dark matter decay mode, n→X+γ. We perform a search for this decay mode over the allowed range of energies of the monoenergetic γ ray for X to be dark matter. A Compton-suppressed high-purity germanium detector is used to identify γ rays from neutron decay in a nickel-phosphorous-coated stainless-steel bottle. A combination of Monte Carlo and radioactive source calibrations is used to determine the absolute efficiency for detecting γ rays arising from the dark matter decay mode. We exclude the possibility of a sufficiently strong branch to explain the lifetime discrepancy with 97% confidence.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.121.022505</doi></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2018, Vol.121 (2)
issn 0031-9007
1079-7114
language eng
recordid cdi_hal_primary_oai_HAL_hal_01714233v1
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Nuclear Experiment
Physics
title Search for the Neutron Decay n$\rightarrow$ X+$\gamma$ where X is a dark matter particle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Search%20for%20the%20Neutron%20Decay%20n$%5Crightarrow$%20X+$%5Cgamma$%20where%20X%20is%20a%20dark%20matter%20particle&rft.jtitle=Physical%20review%20letters&rft.au=Tang,%20Z.&rft.date=2018&rft.volume=121&rft.issue=2&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.121.022505&rft_dat=%3Chal%3Eoai_HAL_hal_01714233v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_hal_01714233v13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true