Loading…

Partition games

We introduce cut, the class of 2-player partition games. These are nim type games, played on a finite number of heaps of beans. The rules are given by a set of positive integers, which specifies the number of allowed splits a player can perform on a single heap. In normal play, the player with the l...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2020-10, Vol.285, p.509-525
Main Authors: Dailly, Antoine, Duchêne, Éric, Larsson, Urban, Paris, Gabrielle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-3fc923693b9ce756ecd42a99e550fe1b8ad6b7288797ba50be485514d23260e43
cites cdi_FETCH-LOGICAL-c402t-3fc923693b9ce756ecd42a99e550fe1b8ad6b7288797ba50be485514d23260e43
container_end_page 525
container_issue
container_start_page 509
container_title Discrete Applied Mathematics
container_volume 285
creator Dailly, Antoine
Duchêne, Éric
Larsson, Urban
Paris, Gabrielle
description We introduce cut, the class of 2-player partition games. These are nim type games, played on a finite number of heaps of beans. The rules are given by a set of positive integers, which specifies the number of allowed splits a player can perform on a single heap. In normal play, the player with the last move wins, and the famous Sprague–Grundy theory provides a solution. We prove that several rulesets have a periodic or an arithmetic periodic Sprague–Grundy sequence (i.e. they can be partitioned into a finite number of arithmetic progressions of the same common difference). This is achieved directly for some infinite classes of games, and moreover we develop a computational testing condition, demonstrated to solve a variety of additional games. Similar results have previously appeared for various classes of games of take-and-break, for example octal and hexadecimal; see e.g. Winning Ways by Berlekamp, Conway and Guy (1982). In this context, our contribution consists of a systematic study of the subclass ‘break-without-take’.
doi_str_mv 10.1016/j.dam.2020.05.032
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01723190v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X20302882</els_id><sourcerecordid>2476554135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-3fc923693b9ce756ecd42a99e550fe1b8ad6b7288797ba50be485514d23260e43</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt49iZ48rDr5HuDpyJqhYIeFLyFbHZWs7TdmmwL_ntTVjx6GmZ43mHmIeSCQkmBqpuubNyqZMCgBFkCZwdkQivNCqU1PSSTzKiC0er9mJyk1AEAzd2EnL-4OIQh9OvLD7fCdEqOWrdMePZbp-Tt4f71bl4snh-f7maLwgtgQ8FbbxhXhtfGo5YKfSOYMwalhBZpXblG1ZpVlTa6dhJqFJWUVDSMMwUo-JRcj3s_3dJuYli5-G17F-x8trD7GVDNODWw45m9GtlN7L-2mAbb9du4zudZJrSSUlAuM0VHysc-pYjt31oKdu_IdjY7sntHFqTNjnLmdsxgfnUXMNrkA649NiGiH2zTh3_SPwksarU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476554135</pqid></control><display><type>article</type><title>Partition games</title><source>ScienceDirect Journals</source><creator>Dailly, Antoine ; Duchêne, Éric ; Larsson, Urban ; Paris, Gabrielle</creator><creatorcontrib>Dailly, Antoine ; Duchêne, Éric ; Larsson, Urban ; Paris, Gabrielle</creatorcontrib><description>We introduce cut, the class of 2-player partition games. These are nim type games, played on a finite number of heaps of beans. The rules are given by a set of positive integers, which specifies the number of allowed splits a player can perform on a single heap. In normal play, the player with the last move wins, and the famous Sprague–Grundy theory provides a solution. We prove that several rulesets have a periodic or an arithmetic periodic Sprague–Grundy sequence (i.e. they can be partitioned into a finite number of arithmetic progressions of the same common difference). This is achieved directly for some infinite classes of games, and moreover we develop a computational testing condition, demonstrated to solve a variety of additional games. Similar results have previously appeared for various classes of games of take-and-break, for example octal and hexadecimal; see e.g. Winning Ways by Berlekamp, Conway and Guy (1982). In this context, our contribution consists of a systematic study of the subclass ‘break-without-take’.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2020.05.032</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Arithmetic ; Beans ; Combinatorial games ; Combinatorics ; Computer Science ; Discrete Mathematics ; Games ; Mathematics ; Partition games ; Partitions (mathematics) ; Progressions ; Take-and-break games</subject><ispartof>Discrete Applied Mathematics, 2020-10, Vol.285, p.509-525</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-3fc923693b9ce756ecd42a99e550fe1b8ad6b7288797ba50be485514d23260e43</citedby><cites>FETCH-LOGICAL-c402t-3fc923693b9ce756ecd42a99e550fe1b8ad6b7288797ba50be485514d23260e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01723190$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dailly, Antoine</creatorcontrib><creatorcontrib>Duchêne, Éric</creatorcontrib><creatorcontrib>Larsson, Urban</creatorcontrib><creatorcontrib>Paris, Gabrielle</creatorcontrib><title>Partition games</title><title>Discrete Applied Mathematics</title><description>We introduce cut, the class of 2-player partition games. These are nim type games, played on a finite number of heaps of beans. The rules are given by a set of positive integers, which specifies the number of allowed splits a player can perform on a single heap. In normal play, the player with the last move wins, and the famous Sprague–Grundy theory provides a solution. We prove that several rulesets have a periodic or an arithmetic periodic Sprague–Grundy sequence (i.e. they can be partitioned into a finite number of arithmetic progressions of the same common difference). This is achieved directly for some infinite classes of games, and moreover we develop a computational testing condition, demonstrated to solve a variety of additional games. Similar results have previously appeared for various classes of games of take-and-break, for example octal and hexadecimal; see e.g. Winning Ways by Berlekamp, Conway and Guy (1982). In this context, our contribution consists of a systematic study of the subclass ‘break-without-take’.</description><subject>Arithmetic</subject><subject>Beans</subject><subject>Combinatorial games</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Games</subject><subject>Mathematics</subject><subject>Partition games</subject><subject>Partitions (mathematics)</subject><subject>Progressions</subject><subject>Take-and-break games</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt49iZ48rDr5HuDpyJqhYIeFLyFbHZWs7TdmmwL_ntTVjx6GmZ43mHmIeSCQkmBqpuubNyqZMCgBFkCZwdkQivNCqU1PSSTzKiC0er9mJyk1AEAzd2EnL-4OIQh9OvLD7fCdEqOWrdMePZbp-Tt4f71bl4snh-f7maLwgtgQ8FbbxhXhtfGo5YKfSOYMwalhBZpXblG1ZpVlTa6dhJqFJWUVDSMMwUo-JRcj3s_3dJuYli5-G17F-x8trD7GVDNODWw45m9GtlN7L-2mAbb9du4zudZJrSSUlAuM0VHysc-pYjt31oKdu_IdjY7sntHFqTNjnLmdsxgfnUXMNrkA649NiGiH2zTh3_SPwksarU</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Dailly, Antoine</creator><creator>Duchêne, Éric</creator><creator>Larsson, Urban</creator><creator>Paris, Gabrielle</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20201015</creationdate><title>Partition games</title><author>Dailly, Antoine ; Duchêne, Éric ; Larsson, Urban ; Paris, Gabrielle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-3fc923693b9ce756ecd42a99e550fe1b8ad6b7288797ba50be485514d23260e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arithmetic</topic><topic>Beans</topic><topic>Combinatorial games</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Games</topic><topic>Mathematics</topic><topic>Partition games</topic><topic>Partitions (mathematics)</topic><topic>Progressions</topic><topic>Take-and-break games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dailly, Antoine</creatorcontrib><creatorcontrib>Duchêne, Éric</creatorcontrib><creatorcontrib>Larsson, Urban</creatorcontrib><creatorcontrib>Paris, Gabrielle</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dailly, Antoine</au><au>Duchêne, Éric</au><au>Larsson, Urban</au><au>Paris, Gabrielle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partition games</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>285</volume><spage>509</spage><epage>525</epage><pages>509-525</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>We introduce cut, the class of 2-player partition games. These are nim type games, played on a finite number of heaps of beans. The rules are given by a set of positive integers, which specifies the number of allowed splits a player can perform on a single heap. In normal play, the player with the last move wins, and the famous Sprague–Grundy theory provides a solution. We prove that several rulesets have a periodic or an arithmetic periodic Sprague–Grundy sequence (i.e. they can be partitioned into a finite number of arithmetic progressions of the same common difference). This is achieved directly for some infinite classes of games, and moreover we develop a computational testing condition, demonstrated to solve a variety of additional games. Similar results have previously appeared for various classes of games of take-and-break, for example octal and hexadecimal; see e.g. Winning Ways by Berlekamp, Conway and Guy (1982). In this context, our contribution consists of a systematic study of the subclass ‘break-without-take’.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2020.05.032</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2020-10, Vol.285, p.509-525
issn 0166-218X
1872-6771
language eng
recordid cdi_hal_primary_oai_HAL_hal_01723190v3
source ScienceDirect Journals
subjects Arithmetic
Beans
Combinatorial games
Combinatorics
Computer Science
Discrete Mathematics
Games
Mathematics
Partition games
Partitions (mathematics)
Progressions
Take-and-break games
title Partition games
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partition%20games&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Dailly,%20Antoine&rft.date=2020-10-15&rft.volume=285&rft.spage=509&rft.epage=525&rft.pages=509-525&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2020.05.032&rft_dat=%3Cproquest_hal_p%3E2476554135%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-3fc923693b9ce756ecd42a99e550fe1b8ad6b7288797ba50be485514d23260e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2476554135&rft_id=info:pmid/&rfr_iscdi=true