Loading…
On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result
The fact that the complete graph K 5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K n embeds in a closed surface M (other than the Klein bottle...
Saved in:
Published in: | Israel journal of mathematics 2017-10, Vol.222 (2), p.841-866 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843 |
container_end_page | 866 |
container_issue | 2 |
container_start_page | 841 |
container_title | Israel journal of mathematics |
container_volume | 222 |
creator | Goaoc, Xavier Mabillard, Isaac Paták, Pavel Patáková, Zuzana Tancer, Martin Wagner, Uli |
description | The fact that the complete graph
K
5
does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph
K
n
embeds in a closed surface
M
(other than the Klein bottle) if and only if (
n
−3)(
n
−4) ≤ 6
b
1
(
M
), where
b
1
(
M
) is the first
Z
2
-Betti number of
M
. On the other hand, van Kampen and Flores proved that the
k
-skeleton of the
n
-dimensional simplex (the higher-dimensional analogue of
K
n+1
) embeds in
R
2
k
if and only if
n
≤ 2
k
+ 1.
Two decades ago, Kühnel conjectured that the
k
-skeleton of the
n
-simplex embeds in a compact, (
k
− 1)-connected 2
k
-manifold with
k
th
Z
2
-Betti number
b
k
only if the following generalized Heawood inequality holds: (
k
+1
n
−
k
−1
) ≤ (
k
+1
2
k
+1
)
b
k
. This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem.
In the spirit of Kühnel’s conjecture, we prove that if the
k
-skeleton of the
n
-simplex embeds in a compact 2
k
-manifold with
k
th
Z
2
-Betti number bk, then
n
≤ 2
b
k
(
k
2
k
+2
)+2
k
+4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that
M
is (
k
−1)-connected. Our results generalize to maps without
q
-covered points, in the spirit of Tverberg’s theorem, for
q
a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition. |
doi_str_mv | 10.1007/s11856-017-1607-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01744156v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962632510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843</originalsourceid><addsrcrecordid>eNp1kMFOGzEQhq2qSE2BB-jNUk89mHrs3fW6N4SAVETiAmdrEs-mizZ2sDegcOo79A15EhxthXrpaaSZ7_81-hj7AvIMpDTfM0BbN0KCEdBII8wHNoO6qUVbA3xkMykVCAVGfWKfc36QstYG9IzRbeBrCpRw6F_I8znhc4ye94Eed2U39pR5FxPfYOi7OPj8gyN_wsBvcLOl8Pr7z9UQE2Ux7rfEQwy0WZL3uOxLeM_LZTeMJ-yowyHT6d95zO6vLu8u5mJxe_3z4nwhVtrqUViqWktoJfi2Ie2lrw2uqhZQdRrtypCvDJHXqFvwlqiRCLWSRlkrfVvpY_Zt6v2Fg9umfoNp7yL2bn6-cIdd8VNVxcsTFPbrxG5TfNxRHt1D3KVQ3nNgG9VoVYMsFEzUKsWcE3XvtSDdwbybzB-a3cG8MyWjpkwubFhT-qf5v6E3KCWHNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962632510</pqid></control><display><type>article</type><title>On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result</title><source>Springer Nature</source><creator>Goaoc, Xavier ; Mabillard, Isaac ; Paták, Pavel ; Patáková, Zuzana ; Tancer, Martin ; Wagner, Uli</creator><creatorcontrib>Goaoc, Xavier ; Mabillard, Isaac ; Paták, Pavel ; Patáková, Zuzana ; Tancer, Martin ; Wagner, Uli</creatorcontrib><description>The fact that the complete graph
K
5
does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph
K
n
embeds in a closed surface
M
(other than the Klein bottle) if and only if (
n
−3)(
n
−4) ≤ 6
b
1
(
M
), where
b
1
(
M
) is the first
Z
2
-Betti number of
M
. On the other hand, van Kampen and Flores proved that the
k
-skeleton of the
n
-dimensional simplex (the higher-dimensional analogue of
K
n+1
) embeds in
R
2
k
if and only if
n
≤ 2
k
+ 1.
Two decades ago, Kühnel conjectured that the
k
-skeleton of the
n
-simplex embeds in a compact, (
k
− 1)-connected 2
k
-manifold with
k
th
Z
2
-Betti number
b
k
only if the following generalized Heawood inequality holds: (
k
+1
n
−
k
−1
) ≤ (
k
+1
2
k
+1
)
b
k
. This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem.
In the spirit of Kühnel’s conjecture, we prove that if the
k
-skeleton of the
n
-simplex embeds in a compact 2
k
-manifold with
k
th
Z
2
-Betti number bk, then
n
≤ 2
b
k
(
k
2
k
+2
)+2
k
+4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that
M
is (
k
−1)-connected. Our results generalize to maps without
q
-covered points, in the spirit of Tverberg’s theorem, for
q
a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-017-1607-7</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Computational Geometry ; Computer Science ; Graphs ; Group Theory and Generalizations ; Homology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Municipal bonds ; Theorems ; Theoretical</subject><ispartof>Israel journal of mathematics, 2017-10, Vol.222 (2), p.841-866</ispartof><rights>Hebrew University of Jerusalem 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843</citedby><cites>FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01744156$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goaoc, Xavier</creatorcontrib><creatorcontrib>Mabillard, Isaac</creatorcontrib><creatorcontrib>Paták, Pavel</creatorcontrib><creatorcontrib>Patáková, Zuzana</creatorcontrib><creatorcontrib>Tancer, Martin</creatorcontrib><creatorcontrib>Wagner, Uli</creatorcontrib><title>On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>The fact that the complete graph
K
5
does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph
K
n
embeds in a closed surface
M
(other than the Klein bottle) if and only if (
n
−3)(
n
−4) ≤ 6
b
1
(
M
), where
b
1
(
M
) is the first
Z
2
-Betti number of
M
. On the other hand, van Kampen and Flores proved that the
k
-skeleton of the
n
-dimensional simplex (the higher-dimensional analogue of
K
n+1
) embeds in
R
2
k
if and only if
n
≤ 2
k
+ 1.
Two decades ago, Kühnel conjectured that the
k
-skeleton of the
n
-simplex embeds in a compact, (
k
− 1)-connected 2
k
-manifold with
k
th
Z
2
-Betti number
b
k
only if the following generalized Heawood inequality holds: (
k
+1
n
−
k
−1
) ≤ (
k
+1
2
k
+1
)
b
k
. This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem.
In the spirit of Kühnel’s conjecture, we prove that if the
k
-skeleton of the
n
-simplex embeds in a compact 2
k
-manifold with
k
th
Z
2
-Betti number bk, then
n
≤ 2
b
k
(
k
2
k
+2
)+2
k
+4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that
M
is (
k
−1)-connected. Our results generalize to maps without
q
-covered points, in the spirit of Tverberg’s theorem, for
q
a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Computational Geometry</subject><subject>Computer Science</subject><subject>Graphs</subject><subject>Group Theory and Generalizations</subject><subject>Homology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Municipal bonds</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOGzEQhq2qSE2BB-jNUk89mHrs3fW6N4SAVETiAmdrEs-mizZ2sDegcOo79A15EhxthXrpaaSZ7_81-hj7AvIMpDTfM0BbN0KCEdBII8wHNoO6qUVbA3xkMykVCAVGfWKfc36QstYG9IzRbeBrCpRw6F_I8znhc4ye94Eed2U39pR5FxPfYOi7OPj8gyN_wsBvcLOl8Pr7z9UQE2Ux7rfEQwy0WZL3uOxLeM_LZTeMJ-yowyHT6d95zO6vLu8u5mJxe_3z4nwhVtrqUViqWktoJfi2Ie2lrw2uqhZQdRrtypCvDJHXqFvwlqiRCLWSRlkrfVvpY_Zt6v2Fg9umfoNp7yL2bn6-cIdd8VNVxcsTFPbrxG5TfNxRHt1D3KVQ3nNgG9VoVYMsFEzUKsWcE3XvtSDdwbybzB-a3cG8MyWjpkwubFhT-qf5v6E3KCWHNg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Goaoc, Xavier</creator><creator>Mabillard, Isaac</creator><creator>Paták, Pavel</creator><creator>Patáková, Zuzana</creator><creator>Tancer, Martin</creator><creator>Wagner, Uli</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20171001</creationdate><title>On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result</title><author>Goaoc, Xavier ; Mabillard, Isaac ; Paták, Pavel ; Patáková, Zuzana ; Tancer, Martin ; Wagner, Uli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Computational Geometry</topic><topic>Computer Science</topic><topic>Graphs</topic><topic>Group Theory and Generalizations</topic><topic>Homology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Municipal bonds</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goaoc, Xavier</creatorcontrib><creatorcontrib>Mabillard, Isaac</creatorcontrib><creatorcontrib>Paták, Pavel</creatorcontrib><creatorcontrib>Patáková, Zuzana</creatorcontrib><creatorcontrib>Tancer, Martin</creatorcontrib><creatorcontrib>Wagner, Uli</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goaoc, Xavier</au><au>Mabillard, Isaac</au><au>Paták, Pavel</au><au>Patáková, Zuzana</au><au>Tancer, Martin</au><au>Wagner, Uli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>222</volume><issue>2</issue><spage>841</spage><epage>866</epage><pages>841-866</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>The fact that the complete graph
K
5
does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph
K
n
embeds in a closed surface
M
(other than the Klein bottle) if and only if (
n
−3)(
n
−4) ≤ 6
b
1
(
M
), where
b
1
(
M
) is the first
Z
2
-Betti number of
M
. On the other hand, van Kampen and Flores proved that the
k
-skeleton of the
n
-dimensional simplex (the higher-dimensional analogue of
K
n+1
) embeds in
R
2
k
if and only if
n
≤ 2
k
+ 1.
Two decades ago, Kühnel conjectured that the
k
-skeleton of the
n
-simplex embeds in a compact, (
k
− 1)-connected 2
k
-manifold with
k
th
Z
2
-Betti number
b
k
only if the following generalized Heawood inequality holds: (
k
+1
n
−
k
−1
) ≤ (
k
+1
2
k
+1
)
b
k
. This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem.
In the spirit of Kühnel’s conjecture, we prove that if the
k
-skeleton of the
n
-simplex embeds in a compact 2
k
-manifold with
k
th
Z
2
-Betti number bk, then
n
≤ 2
b
k
(
k
2
k
+2
)+2
k
+4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that
M
is (
k
−1)-connected. Our results generalize to maps without
q
-covered points, in the spirit of Tverberg’s theorem, for
q
a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-017-1607-7</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2017-10, Vol.222 (2), p.841-866 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01744156v1 |
source | Springer Nature |
subjects | Algebra Analysis Applications of Mathematics Computational Geometry Computer Science Graphs Group Theory and Generalizations Homology Mathematical and Computational Physics Mathematics Mathematics and Statistics Municipal bonds Theorems Theoretical |
title | On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20generalized%20Heawood%20inequalities%20for%20manifolds:%20a%20van%20Kampen%E2%80%93Flores-type%20nonembeddability%20result&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Goaoc,%20Xavier&rft.date=2017-10-01&rft.volume=222&rft.issue=2&rft.spage=841&rft.epage=866&rft.pages=841-866&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-017-1607-7&rft_dat=%3Cproquest_hal_p%3E1962632510%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1962632510&rft_id=info:pmid/&rfr_iscdi=true |