Loading…

On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result

The fact that the complete graph K 5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K n embeds in a closed surface M (other than the Klein bottle...

Full description

Saved in:
Bibliographic Details
Published in:Israel journal of mathematics 2017-10, Vol.222 (2), p.841-866
Main Authors: Goaoc, Xavier, Mabillard, Isaac, Paták, Pavel, Patáková, Zuzana, Tancer, Martin, Wagner, Uli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843
cites cdi_FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843
container_end_page 866
container_issue 2
container_start_page 841
container_title Israel journal of mathematics
container_volume 222
creator Goaoc, Xavier
Mabillard, Isaac
Paták, Pavel
Patáková, Zuzana
Tancer, Martin
Wagner, Uli
description The fact that the complete graph K 5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K n embeds in a closed surface M (other than the Klein bottle) if and only if ( n −3)( n −4) ≤ 6 b 1 ( M ), where b 1 ( M ) is the first Z 2 -Betti number of M . On the other hand, van Kampen and Flores proved that the k -skeleton of the n -dimensional simplex (the higher-dimensional analogue of K n+1 ) embeds in R 2 k if and only if n ≤ 2 k + 1. Two decades ago, Kühnel conjectured that the k -skeleton of the n -simplex embeds in a compact, ( k − 1)-connected 2 k -manifold with k th Z 2 -Betti number b k only if the following generalized Heawood inequality holds: ( k +1 n − k −1 ) ≤ ( k +1 2 k +1 ) b k . This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem. In the spirit of Kühnel’s conjecture, we prove that if the k -skeleton of the n -simplex embeds in a compact 2 k -manifold with k th Z 2 -Betti number bk, then n ≤ 2 b k ( k 2 k +2 )+2 k +4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is ( k −1)-connected. Our results generalize to maps without q -covered points, in the spirit of Tverberg’s theorem, for q a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.
doi_str_mv 10.1007/s11856-017-1607-7
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01744156v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962632510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843</originalsourceid><addsrcrecordid>eNp1kMFOGzEQhq2qSE2BB-jNUk89mHrs3fW6N4SAVETiAmdrEs-mizZ2sDegcOo79A15EhxthXrpaaSZ7_81-hj7AvIMpDTfM0BbN0KCEdBII8wHNoO6qUVbA3xkMykVCAVGfWKfc36QstYG9IzRbeBrCpRw6F_I8znhc4ye94Eed2U39pR5FxPfYOi7OPj8gyN_wsBvcLOl8Pr7z9UQE2Ux7rfEQwy0WZL3uOxLeM_LZTeMJ-yowyHT6d95zO6vLu8u5mJxe_3z4nwhVtrqUViqWktoJfi2Ie2lrw2uqhZQdRrtypCvDJHXqFvwlqiRCLWSRlkrfVvpY_Zt6v2Fg9umfoNp7yL2bn6-cIdd8VNVxcsTFPbrxG5TfNxRHt1D3KVQ3nNgG9VoVYMsFEzUKsWcE3XvtSDdwbybzB-a3cG8MyWjpkwubFhT-qf5v6E3KCWHNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1962632510</pqid></control><display><type>article</type><title>On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result</title><source>Springer Nature</source><creator>Goaoc, Xavier ; Mabillard, Isaac ; Paták, Pavel ; Patáková, Zuzana ; Tancer, Martin ; Wagner, Uli</creator><creatorcontrib>Goaoc, Xavier ; Mabillard, Isaac ; Paták, Pavel ; Patáková, Zuzana ; Tancer, Martin ; Wagner, Uli</creatorcontrib><description>The fact that the complete graph K 5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K n embeds in a closed surface M (other than the Klein bottle) if and only if ( n −3)( n −4) ≤ 6 b 1 ( M ), where b 1 ( M ) is the first Z 2 -Betti number of M . On the other hand, van Kampen and Flores proved that the k -skeleton of the n -dimensional simplex (the higher-dimensional analogue of K n+1 ) embeds in R 2 k if and only if n ≤ 2 k + 1. Two decades ago, Kühnel conjectured that the k -skeleton of the n -simplex embeds in a compact, ( k − 1)-connected 2 k -manifold with k th Z 2 -Betti number b k only if the following generalized Heawood inequality holds: ( k +1 n − k −1 ) ≤ ( k +1 2 k +1 ) b k . This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem. In the spirit of Kühnel’s conjecture, we prove that if the k -skeleton of the n -simplex embeds in a compact 2 k -manifold with k th Z 2 -Betti number bk, then n ≤ 2 b k ( k 2 k +2 )+2 k +4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is ( k −1)-connected. Our results generalize to maps without q -covered points, in the spirit of Tverberg’s theorem, for q a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-017-1607-7</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Computational Geometry ; Computer Science ; Graphs ; Group Theory and Generalizations ; Homology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Municipal bonds ; Theorems ; Theoretical</subject><ispartof>Israel journal of mathematics, 2017-10, Vol.222 (2), p.841-866</ispartof><rights>Hebrew University of Jerusalem 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843</citedby><cites>FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01744156$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goaoc, Xavier</creatorcontrib><creatorcontrib>Mabillard, Isaac</creatorcontrib><creatorcontrib>Paták, Pavel</creatorcontrib><creatorcontrib>Patáková, Zuzana</creatorcontrib><creatorcontrib>Tancer, Martin</creatorcontrib><creatorcontrib>Wagner, Uli</creatorcontrib><title>On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>The fact that the complete graph K 5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K n embeds in a closed surface M (other than the Klein bottle) if and only if ( n −3)( n −4) ≤ 6 b 1 ( M ), where b 1 ( M ) is the first Z 2 -Betti number of M . On the other hand, van Kampen and Flores proved that the k -skeleton of the n -dimensional simplex (the higher-dimensional analogue of K n+1 ) embeds in R 2 k if and only if n ≤ 2 k + 1. Two decades ago, Kühnel conjectured that the k -skeleton of the n -simplex embeds in a compact, ( k − 1)-connected 2 k -manifold with k th Z 2 -Betti number b k only if the following generalized Heawood inequality holds: ( k +1 n − k −1 ) ≤ ( k +1 2 k +1 ) b k . This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem. In the spirit of Kühnel’s conjecture, we prove that if the k -skeleton of the n -simplex embeds in a compact 2 k -manifold with k th Z 2 -Betti number bk, then n ≤ 2 b k ( k 2 k +2 )+2 k +4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is ( k −1)-connected. Our results generalize to maps without q -covered points, in the spirit of Tverberg’s theorem, for q a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Computational Geometry</subject><subject>Computer Science</subject><subject>Graphs</subject><subject>Group Theory and Generalizations</subject><subject>Homology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Municipal bonds</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOGzEQhq2qSE2BB-jNUk89mHrs3fW6N4SAVETiAmdrEs-mizZ2sDegcOo79A15EhxthXrpaaSZ7_81-hj7AvIMpDTfM0BbN0KCEdBII8wHNoO6qUVbA3xkMykVCAVGfWKfc36QstYG9IzRbeBrCpRw6F_I8znhc4ye94Eed2U39pR5FxPfYOi7OPj8gyN_wsBvcLOl8Pr7z9UQE2Ux7rfEQwy0WZL3uOxLeM_LZTeMJ-yowyHT6d95zO6vLu8u5mJxe_3z4nwhVtrqUViqWktoJfi2Ie2lrw2uqhZQdRrtypCvDJHXqFvwlqiRCLWSRlkrfVvpY_Zt6v2Fg9umfoNp7yL2bn6-cIdd8VNVxcsTFPbrxG5TfNxRHt1D3KVQ3nNgG9VoVYMsFEzUKsWcE3XvtSDdwbybzB-a3cG8MyWjpkwubFhT-qf5v6E3KCWHNg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Goaoc, Xavier</creator><creator>Mabillard, Isaac</creator><creator>Paták, Pavel</creator><creator>Patáková, Zuzana</creator><creator>Tancer, Martin</creator><creator>Wagner, Uli</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20171001</creationdate><title>On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result</title><author>Goaoc, Xavier ; Mabillard, Isaac ; Paták, Pavel ; Patáková, Zuzana ; Tancer, Martin ; Wagner, Uli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Computational Geometry</topic><topic>Computer Science</topic><topic>Graphs</topic><topic>Group Theory and Generalizations</topic><topic>Homology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Municipal bonds</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goaoc, Xavier</creatorcontrib><creatorcontrib>Mabillard, Isaac</creatorcontrib><creatorcontrib>Paták, Pavel</creatorcontrib><creatorcontrib>Patáková, Zuzana</creatorcontrib><creatorcontrib>Tancer, Martin</creatorcontrib><creatorcontrib>Wagner, Uli</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goaoc, Xavier</au><au>Mabillard, Isaac</au><au>Paták, Pavel</au><au>Patáková, Zuzana</au><au>Tancer, Martin</au><au>Wagner, Uli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>222</volume><issue>2</issue><spage>841</spage><epage>866</epage><pages>841-866</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>The fact that the complete graph K 5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K n embeds in a closed surface M (other than the Klein bottle) if and only if ( n −3)( n −4) ≤ 6 b 1 ( M ), where b 1 ( M ) is the first Z 2 -Betti number of M . On the other hand, van Kampen and Flores proved that the k -skeleton of the n -dimensional simplex (the higher-dimensional analogue of K n+1 ) embeds in R 2 k if and only if n ≤ 2 k + 1. Two decades ago, Kühnel conjectured that the k -skeleton of the n -simplex embeds in a compact, ( k − 1)-connected 2 k -manifold with k th Z 2 -Betti number b k only if the following generalized Heawood inequality holds: ( k +1 n − k −1 ) ≤ ( k +1 2 k +1 ) b k . This is a common generalization of the case of graphs on surfaces as well as the van Kampen–Flores theorem. In the spirit of Kühnel’s conjecture, we prove that if the k -skeleton of the n -simplex embeds in a compact 2 k -manifold with k th Z 2 -Betti number bk, then n ≤ 2 b k ( k 2 k +2 )+2 k +4. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is ( k −1)-connected. Our results generalize to maps without q -covered points, in the spirit of Tverberg’s theorem, for q a prime power. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-017-1607-7</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2017-10, Vol.222 (2), p.841-866
issn 0021-2172
1565-8511
language eng
recordid cdi_hal_primary_oai_HAL_hal_01744156v1
source Springer Nature
subjects Algebra
Analysis
Applications of Mathematics
Computational Geometry
Computer Science
Graphs
Group Theory and Generalizations
Homology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Municipal bonds
Theorems
Theoretical
title On generalized Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20generalized%20Heawood%20inequalities%20for%20manifolds:%20a%20van%20Kampen%E2%80%93Flores-type%20nonembeddability%20result&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Goaoc,%20Xavier&rft.date=2017-10-01&rft.volume=222&rft.issue=2&rft.spage=841&rft.epage=866&rft.pages=841-866&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-017-1607-7&rft_dat=%3Cproquest_hal_p%3E1962632510%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-9e489ea901d86e3d0d57ac481a2f3a9c7ed47eed3a381d9ee60a152072990d843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1962632510&rft_id=info:pmid/&rfr_iscdi=true