Loading…
The vectorial λ-calculus
We describe a type system for the linear-algebraic λ-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an origina...
Saved in:
Published in: | Information and computation 2017-06, Vol.254 (1), p.105-139 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-b47d120766794dd59db1c0aaa3c7e83117bd045854d0e1fbd2e94367dd8d7fd33 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-b47d120766794dd59db1c0aaa3c7e83117bd045854d0e1fbd2e94367dd8d7fd33 |
container_end_page | 139 |
container_issue | 1 |
container_start_page | 105 |
container_title | Information and computation |
container_volume | 254 |
creator | Arrighi, Pablo Díaz-Caro, Alejandro Valiron, Benoît |
description | We describe a type system for the linear-algebraic λ-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed λ-calculus is strongly normalising and features weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus. |
doi_str_mv | 10.1016/j.ic.2017.04.001 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01785464v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890540117300482</els_id><sourcerecordid>S0890540117300482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-b47d120766794dd59db1c0aaa3c7e83117bd045854d0e1fbd2e94367dd8d7fd33</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMoWFfveturh9aZNk1ab8uirlDwsp5DmknZlGol2S34bL6Dz2SWijdPMwz_N_D9jF0jZAgo7vrMmSwHlBnwDABPWIJQQ5qLEk9ZAlXcSw54zi5C6GMASy4SdrPd2eVkzX70Tg_L76_U6MEchkO4ZGedHoK9-p0L9vr4sF1v0ubl6Xm9alJTSNinLZeEOUghZM2JyppaNKC1Loy0VYEoWwJeViUnsNi1lNuaF0ISVSQ7KooFu53_7vSgPrx70_5TjdqpzapRx1t0irTgE8YszFnjxxC87f4ABHWsQfXKGXWsQQFX0TIi9zNio8PkrFfBOPtuLDkftRWN7n_4Bx7gYoo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The vectorial λ-calculus</title><source>ScienceDirect Journals</source><creator>Arrighi, Pablo ; Díaz-Caro, Alejandro ; Valiron, Benoît</creator><creatorcontrib>Arrighi, Pablo ; Díaz-Caro, Alejandro ; Valiron, Benoît</creatorcontrib><description>We describe a type system for the linear-algebraic λ-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed λ-calculus is strongly normalising and features weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus.</description><identifier>ISSN: 0890-5401</identifier><identifier>EISSN: 1090-2651</identifier><identifier>DOI: 10.1016/j.ic.2017.04.001</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Computer Science</subject><ispartof>Information and computation, 2017-06, Vol.254 (1), p.105-139</ispartof><rights>2017 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-b47d120766794dd59db1c0aaa3c7e83117bd045854d0e1fbd2e94367dd8d7fd33</citedby><cites>FETCH-LOGICAL-c370t-b47d120766794dd59db1c0aaa3c7e83117bd045854d0e1fbd2e94367dd8d7fd33</cites><orcidid>0000-0002-1008-5605 ; 0000-0002-3535-1009 ; 0000-0002-5175-6882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01785464$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Arrighi, Pablo</creatorcontrib><creatorcontrib>Díaz-Caro, Alejandro</creatorcontrib><creatorcontrib>Valiron, Benoît</creatorcontrib><title>The vectorial λ-calculus</title><title>Information and computation</title><description>We describe a type system for the linear-algebraic λ-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed λ-calculus is strongly normalising and features weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus.</description><subject>Computer Science</subject><issn>0890-5401</issn><issn>1090-2651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMoWFfveturh9aZNk1ab8uirlDwsp5DmknZlGol2S34bL6Dz2SWijdPMwz_N_D9jF0jZAgo7vrMmSwHlBnwDABPWIJQQ5qLEk9ZAlXcSw54zi5C6GMASy4SdrPd2eVkzX70Tg_L76_U6MEchkO4ZGedHoK9-p0L9vr4sF1v0ubl6Xm9alJTSNinLZeEOUghZM2JyppaNKC1Loy0VYEoWwJeViUnsNi1lNuaF0ISVSQ7KooFu53_7vSgPrx70_5TjdqpzapRx1t0irTgE8YszFnjxxC87f4ABHWsQfXKGXWsQQFX0TIi9zNio8PkrFfBOPtuLDkftRWN7n_4Bx7gYoo</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Arrighi, Pablo</creator><creator>Díaz-Caro, Alejandro</creator><creator>Valiron, Benoît</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1008-5605</orcidid><orcidid>https://orcid.org/0000-0002-3535-1009</orcidid><orcidid>https://orcid.org/0000-0002-5175-6882</orcidid></search><sort><creationdate>201706</creationdate><title>The vectorial λ-calculus</title><author>Arrighi, Pablo ; Díaz-Caro, Alejandro ; Valiron, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-b47d120766794dd59db1c0aaa3c7e83117bd045854d0e1fbd2e94367dd8d7fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arrighi, Pablo</creatorcontrib><creatorcontrib>Díaz-Caro, Alejandro</creatorcontrib><creatorcontrib>Valiron, Benoît</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Information and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arrighi, Pablo</au><au>Díaz-Caro, Alejandro</au><au>Valiron, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The vectorial λ-calculus</atitle><jtitle>Information and computation</jtitle><date>2017-06</date><risdate>2017</risdate><volume>254</volume><issue>1</issue><spage>105</spage><epage>139</epage><pages>105-139</pages><issn>0890-5401</issn><eissn>1090-2651</eissn><abstract>We describe a type system for the linear-algebraic λ-calculus. The type system accounts for the linear-algebraic aspects of this extension of λ-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed λ-calculus is strongly normalising and features weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ic.2017.04.001</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-1008-5605</orcidid><orcidid>https://orcid.org/0000-0002-3535-1009</orcidid><orcidid>https://orcid.org/0000-0002-5175-6882</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-5401 |
ispartof | Information and computation, 2017-06, Vol.254 (1), p.105-139 |
issn | 0890-5401 1090-2651 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01785464v1 |
source | ScienceDirect Journals |
subjects | Computer Science |
title | The vectorial λ-calculus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20vectorial%20%CE%BB-calculus&rft.jtitle=Information%20and%20computation&rft.au=Arrighi,%20Pablo&rft.date=2017-06&rft.volume=254&rft.issue=1&rft.spage=105&rft.epage=139&rft.pages=105-139&rft.issn=0890-5401&rft.eissn=1090-2651&rft_id=info:doi/10.1016/j.ic.2017.04.001&rft_dat=%3Celsevier_hal_p%3ES0890540117300482%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-b47d120766794dd59db1c0aaa3c7e83117bd045854d0e1fbd2e94367dd8d7fd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |