Loading…
Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms
Surface plasmon (SP) technologies exploit the spectral and spatial properties of collective electronic oscillations in noble metals placed in an incident optical field. Yet the SP local density of states (LDOS), which rule the energy transducing phenomena between the SP and the electromagnetic field...
Saved in:
Published in: | Nature materials 2013-05, Vol.12 (5), p.426-432 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-892191d993466a97c1726ae72bfdace9ee5a0c1e5e03f35592d6fa552de8cdd33 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-892191d993466a97c1726ae72bfdace9ee5a0c1e5e03f35592d6fa552de8cdd33 |
container_end_page | 432 |
container_issue | 5 |
container_start_page | 426 |
container_title | Nature materials |
container_volume | 12 |
creator | Viarbitskaya, Sviatlana Teulle, Alexandre Marty, Renaud Sharma, Jadab Girard, Christian Arbouet, Arnaud Dujardin, Erik |
description | Surface plasmon (SP) technologies exploit the spectral and spatial properties of collective electronic oscillations in noble metals placed in an incident optical field. Yet the SP local density of states (LDOS), which rule the energy transducing phenomena between the SP and the electromagnetic field, is much less exploited. Here, we use two-photon luminescence (TPL) microscopy to reveal the SP-LDOS in thin single-crystalline triangular gold nanoprisms produced by a quantitative one-pot synthesis at room temperature. Variations of the polarization and the wavelength of the incident light redistribute the TPL intensity into two-dimensional plasmonic resonator patterns that are faithfully reproduced by theoretical simulations. We demonstrate that experimental TPL maps can be considered as the convolution of the SP-LDOS with the diffraction-limited Gaussian light beam. Finally, the SP modal distribution is tuned by the spatial coupling of nanoprisms, thus allowing a new modal design of plasmonic information processing devices.
Much less exploited than the spectral and spatial properties of surface plasmons (SPs) are their local density of states (SP-LDOS), which rule a number of important nanoscale phenomena. Using two-photon luminescence microscopy, the SP-LDOS in ultrathin gold nanoprisms is now visualized directly, allowing for the SP modal distribution to be tuned. |
doi_str_mv | 10.1038/nmat3581 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01798016v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2998341821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-892191d993466a97c1726ae72bfdace9ee5a0c1e5e03f35592d6fa552de8cdd33</originalsourceid><addsrcrecordid>eNpdkU1LJDEQhoO4-A3-Agl40cPsppJJunMUcdeFgb3ouSmTao2kkzHpEebf24OjK57qg4e33uJl7BTETxCq_ZUGHJVuYYcdwLwxs7kxYnfbA0i5zw5rfRZCgtZmj-1LpYUSAAfs_g5DzCWkR47J8zDg46Yfn4gvI9Yhp-B4zA4j95RqGNc897yOOFLlIXFX1tMQY0jEE6a8LKEO9Zj96DFWOtnWI3b_--bu-na2-Pfn7_XVYubmjR1nrZVgwVurJsNoGweNNEiNfOg9OrJEGoUD0iRUr7S20psetZaeWue9Ukfs8l33CWM3nR6wrLuMobu9WnSbnYDGtgLMK0zsxTu7LPllRXXshlAdxYiJ8qp2oFSrrLGimdDzb-hzXpU0fTJRpjWNFOaLoCu51kL9pwMQ3SaW7iOWCT3bCq4eBvKf4EcO_x-py00WVL5c_C72BsOXlXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1368672061</pqid></control><display><type>article</type><title>Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms</title><source>Nature</source><creator>Viarbitskaya, Sviatlana ; Teulle, Alexandre ; Marty, Renaud ; Sharma, Jadab ; Girard, Christian ; Arbouet, Arnaud ; Dujardin, Erik</creator><creatorcontrib>Viarbitskaya, Sviatlana ; Teulle, Alexandre ; Marty, Renaud ; Sharma, Jadab ; Girard, Christian ; Arbouet, Arnaud ; Dujardin, Erik</creatorcontrib><description>Surface plasmon (SP) technologies exploit the spectral and spatial properties of collective electronic oscillations in noble metals placed in an incident optical field. Yet the SP local density of states (LDOS), which rule the energy transducing phenomena between the SP and the electromagnetic field, is much less exploited. Here, we use two-photon luminescence (TPL) microscopy to reveal the SP-LDOS in thin single-crystalline triangular gold nanoprisms produced by a quantitative one-pot synthesis at room temperature. Variations of the polarization and the wavelength of the incident light redistribute the TPL intensity into two-dimensional plasmonic resonator patterns that are faithfully reproduced by theoretical simulations. We demonstrate that experimental TPL maps can be considered as the convolution of the SP-LDOS with the diffraction-limited Gaussian light beam. Finally, the SP modal distribution is tuned by the spatial coupling of nanoprisms, thus allowing a new modal design of plasmonic information processing devices.
Much less exploited than the spectral and spatial properties of surface plasmons (SPs) are their local density of states (SP-LDOS), which rule a number of important nanoscale phenomena. Using two-photon luminescence microscopy, the SP-LDOS in ultrathin gold nanoprisms is now visualized directly, allowing for the SP modal distribution to be tuned.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3581</identifier><identifier>PMID: 23503011</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1019/1021 ; 639/301/930/328 ; Biomaterials ; Chemical Sciences ; Condensed Matter Physics ; Convolution ; Electromagnetic fields ; Gold ; Luminescence ; Material chemistry ; Materials Science ; Microscopy ; Nanostructured materials ; Nanotechnology ; Optical and Electronic Materials ; Single crystals</subject><ispartof>Nature materials, 2013-05, Vol.12 (5), p.426-432</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group May 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-892191d993466a97c1726ae72bfdace9ee5a0c1e5e03f35592d6fa552de8cdd33</citedby><cites>FETCH-LOGICAL-c479t-892191d993466a97c1726ae72bfdace9ee5a0c1e5e03f35592d6fa552de8cdd33</cites><orcidid>0000-0001-7242-9250 ; 0000-0002-6825-7668</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23503011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01798016$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Viarbitskaya, Sviatlana</creatorcontrib><creatorcontrib>Teulle, Alexandre</creatorcontrib><creatorcontrib>Marty, Renaud</creatorcontrib><creatorcontrib>Sharma, Jadab</creatorcontrib><creatorcontrib>Girard, Christian</creatorcontrib><creatorcontrib>Arbouet, Arnaud</creatorcontrib><creatorcontrib>Dujardin, Erik</creatorcontrib><title>Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Surface plasmon (SP) technologies exploit the spectral and spatial properties of collective electronic oscillations in noble metals placed in an incident optical field. Yet the SP local density of states (LDOS), which rule the energy transducing phenomena between the SP and the electromagnetic field, is much less exploited. Here, we use two-photon luminescence (TPL) microscopy to reveal the SP-LDOS in thin single-crystalline triangular gold nanoprisms produced by a quantitative one-pot synthesis at room temperature. Variations of the polarization and the wavelength of the incident light redistribute the TPL intensity into two-dimensional plasmonic resonator patterns that are faithfully reproduced by theoretical simulations. We demonstrate that experimental TPL maps can be considered as the convolution of the SP-LDOS with the diffraction-limited Gaussian light beam. Finally, the SP modal distribution is tuned by the spatial coupling of nanoprisms, thus allowing a new modal design of plasmonic information processing devices.
Much less exploited than the spectral and spatial properties of surface plasmons (SPs) are their local density of states (SP-LDOS), which rule a number of important nanoscale phenomena. Using two-photon luminescence microscopy, the SP-LDOS in ultrathin gold nanoprisms is now visualized directly, allowing for the SP modal distribution to be tuned.</description><subject>639/301/1019/1021</subject><subject>639/301/930/328</subject><subject>Biomaterials</subject><subject>Chemical Sciences</subject><subject>Condensed Matter Physics</subject><subject>Convolution</subject><subject>Electromagnetic fields</subject><subject>Gold</subject><subject>Luminescence</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Single crystals</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LJDEQhoO4-A3-Agl40cPsppJJunMUcdeFgb3ouSmTao2kkzHpEebf24OjK57qg4e33uJl7BTETxCq_ZUGHJVuYYcdwLwxs7kxYnfbA0i5zw5rfRZCgtZmj-1LpYUSAAfs_g5DzCWkR47J8zDg46Yfn4gvI9Yhp-B4zA4j95RqGNc897yOOFLlIXFX1tMQY0jEE6a8LKEO9Zj96DFWOtnWI3b_--bu-na2-Pfn7_XVYubmjR1nrZVgwVurJsNoGweNNEiNfOg9OrJEGoUD0iRUr7S20psetZaeWue9Ukfs8l33CWM3nR6wrLuMobu9WnSbnYDGtgLMK0zsxTu7LPllRXXshlAdxYiJ8qp2oFSrrLGimdDzb-hzXpU0fTJRpjWNFOaLoCu51kL9pwMQ3SaW7iOWCT3bCq4eBvKf4EcO_x-py00WVL5c_C72BsOXlXM</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Viarbitskaya, Sviatlana</creator><creator>Teulle, Alexandre</creator><creator>Marty, Renaud</creator><creator>Sharma, Jadab</creator><creator>Girard, Christian</creator><creator>Arbouet, Arnaud</creator><creator>Dujardin, Erik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7242-9250</orcidid><orcidid>https://orcid.org/0000-0002-6825-7668</orcidid></search><sort><creationdate>20130501</creationdate><title>Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms</title><author>Viarbitskaya, Sviatlana ; Teulle, Alexandre ; Marty, Renaud ; Sharma, Jadab ; Girard, Christian ; Arbouet, Arnaud ; Dujardin, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-892191d993466a97c1726ae72bfdace9ee5a0c1e5e03f35592d6fa552de8cdd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/1019/1021</topic><topic>639/301/930/328</topic><topic>Biomaterials</topic><topic>Chemical Sciences</topic><topic>Condensed Matter Physics</topic><topic>Convolution</topic><topic>Electromagnetic fields</topic><topic>Gold</topic><topic>Luminescence</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viarbitskaya, Sviatlana</creatorcontrib><creatorcontrib>Teulle, Alexandre</creatorcontrib><creatorcontrib>Marty, Renaud</creatorcontrib><creatorcontrib>Sharma, Jadab</creatorcontrib><creatorcontrib>Girard, Christian</creatorcontrib><creatorcontrib>Arbouet, Arnaud</creatorcontrib><creatorcontrib>Dujardin, Erik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viarbitskaya, Sviatlana</au><au>Teulle, Alexandre</au><au>Marty, Renaud</au><au>Sharma, Jadab</au><au>Girard, Christian</au><au>Arbouet, Arnaud</au><au>Dujardin, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>12</volume><issue>5</issue><spage>426</spage><epage>432</epage><pages>426-432</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Surface plasmon (SP) technologies exploit the spectral and spatial properties of collective electronic oscillations in noble metals placed in an incident optical field. Yet the SP local density of states (LDOS), which rule the energy transducing phenomena between the SP and the electromagnetic field, is much less exploited. Here, we use two-photon luminescence (TPL) microscopy to reveal the SP-LDOS in thin single-crystalline triangular gold nanoprisms produced by a quantitative one-pot synthesis at room temperature. Variations of the polarization and the wavelength of the incident light redistribute the TPL intensity into two-dimensional plasmonic resonator patterns that are faithfully reproduced by theoretical simulations. We demonstrate that experimental TPL maps can be considered as the convolution of the SP-LDOS with the diffraction-limited Gaussian light beam. Finally, the SP modal distribution is tuned by the spatial coupling of nanoprisms, thus allowing a new modal design of plasmonic information processing devices.
Much less exploited than the spectral and spatial properties of surface plasmons (SPs) are their local density of states (SP-LDOS), which rule a number of important nanoscale phenomena. Using two-photon luminescence microscopy, the SP-LDOS in ultrathin gold nanoprisms is now visualized directly, allowing for the SP modal distribution to be tuned.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23503011</pmid><doi>10.1038/nmat3581</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7242-9250</orcidid><orcidid>https://orcid.org/0000-0002-6825-7668</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2013-05, Vol.12 (5), p.426-432 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01798016v1 |
source | Nature |
subjects | 639/301/1019/1021 639/301/930/328 Biomaterials Chemical Sciences Condensed Matter Physics Convolution Electromagnetic fields Gold Luminescence Material chemistry Materials Science Microscopy Nanostructured materials Nanotechnology Optical and Electronic Materials Single crystals |
title | Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20and%20imaging%20the%20plasmonic%20local%20density%20of%20states%20in%20crystalline%20nanoprisms&rft.jtitle=Nature%20materials&rft.au=Viarbitskaya,%20Sviatlana&rft.date=2013-05-01&rft.volume=12&rft.issue=5&rft.spage=426&rft.epage=432&rft.pages=426-432&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3581&rft_dat=%3Cproquest_hal_p%3E2998341821%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-892191d993466a97c1726ae72bfdace9ee5a0c1e5e03f35592d6fa552de8cdd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1368672061&rft_id=info:pmid/23503011&rfr_iscdi=true |