Loading…
MRI-based experimentations of fingertip flat compression: Geometrical measurements and finite element inverse simulations to investigate material property parameters
Modeling human-object interactions is a necessary step in the ergonomic assessment of products. Fingertip finite element models can help investigating these interactions, if they are built based on realistic geometrical data and material properties. The aim of this study was to investigate the finge...
Saved in:
Published in: | Journal of biomechanics 2018-01, Vol.67, p.166-171 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-23a36d01fba7fc868e38c041ec11c2e92eaf28ed71596afa4b12aebaceed4eda3 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-23a36d01fba7fc868e38c041ec11c2e92eaf28ed71596afa4b12aebaceed4eda3 |
container_end_page | 171 |
container_issue | |
container_start_page | 166 |
container_title | Journal of biomechanics |
container_volume | 67 |
creator | Dallard, Jérémy Merlhiot, Xavier Petitjean, Noémie Duprey, Sonia |
description | Modeling human-object interactions is a necessary step in the ergonomic assessment of products. Fingertip finite element models can help investigating these interactions, if they are built based on realistic geometrical data and material properties. The aim of this study was to investigate the fingertip geometry and its mechanical response under compression, and to identify the parameters of a hyperelastic material property associated to the fingertip soft tissues.
Fingertip compression tests in an MRI device were performed on 5 subjects at either 2 or 4 N and at 15° or 50°. The MRI images allowed to document both the internal and external fingertip dimensions and to build 5 subject-specific finite element models. Simulations reproducing the fingertip compression tests were run to obtain the material property parameters of the soft tissues.
Results indicated that two ellipses in the sagittal and longitudinal plane could describe the external fingertip geometry. The internal geometries indicated an averaged maximal thickness of soft tissues of 6.4 ± 0.8 mm and a 4 ± 1 mm height for the phalanx bone. The averaged deflections under loading went from 1.8 ± 0.3 mm at 2 N, 50° to 3.1 ± 0.2 mm at 4 N, 15°. Finally, the following set of parameters for a second order hyperelastic law to model the fingertip soft tissues was proposed: C01=0.59 ± 0.09 kPa and C20 = 2.65 ± 0.88 kPa.
These data should facilitate further efforts on fingertip finite element modeling. |
doi_str_mv | 10.1016/j.jbiomech.2017.11.024 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01801874v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929017306796</els_id><sourcerecordid>1987730978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-23a36d01fba7fc868e38c041ec11c2e92eaf28ed71596afa4b12aebaceed4eda3</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxiMEokvhFSpLXOCwweOkccKJqoK20iIkBGdr4kxar5I42M6KPhDvyWx32wMXJMuWxr9v_n1ZdgYyBwnVh22-bZ0fyd7lSoLOAXKpymfZCmpdrFVRy-fZSkoF60Y18iR7FeNWSqlL3bzMTlSjQMtGrbI_X7_frFuM1An6PVNwI00Jk_NTFL4XvZtuKSQ3i37AJKwf50Ax8vdHcUVcPwVncRAjYVwC7cVR4NTthS6RoOEhJty0oxBJRDcuwzF98g_hmNwtMjryFRznmoPnRtK9mDEgV2Dh6-xFj0OkN8f3NPv55fOPy-v15tvVzeXFZm1LXSceG4uqk9C3qHtbVzUVtZUlkAWwihpF2KuaOg3nTYU9li0opBYtUVdSh8Vp9v6Q9w4HM_MyMNwbj85cX2zMPiah5qPLHTD77sByv78WHsOMLloaBpzIL9FAo88llEVTMPr2H3TrlzDxJEzVWhey0TVT1YGywccYqH_qAKTZm2625tF0szfdABg2nYVnx_RLO1L3JHt0mYFPB4B4dztHwUTraLLUuUA2mc67_9X4C83HxmI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1987730978</pqid></control><display><type>article</type><title>MRI-based experimentations of fingertip flat compression: Geometrical measurements and finite element inverse simulations to investigate material property parameters</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dallard, Jérémy ; Merlhiot, Xavier ; Petitjean, Noémie ; Duprey, Sonia</creator><creatorcontrib>Dallard, Jérémy ; Merlhiot, Xavier ; Petitjean, Noémie ; Duprey, Sonia</creatorcontrib><description>Modeling human-object interactions is a necessary step in the ergonomic assessment of products. Fingertip finite element models can help investigating these interactions, if they are built based on realistic geometrical data and material properties. The aim of this study was to investigate the fingertip geometry and its mechanical response under compression, and to identify the parameters of a hyperelastic material property associated to the fingertip soft tissues.
Fingertip compression tests in an MRI device were performed on 5 subjects at either 2 or 4 N and at 15° or 50°. The MRI images allowed to document both the internal and external fingertip dimensions and to build 5 subject-specific finite element models. Simulations reproducing the fingertip compression tests were run to obtain the material property parameters of the soft tissues.
Results indicated that two ellipses in the sagittal and longitudinal plane could describe the external fingertip geometry. The internal geometries indicated an averaged maximal thickness of soft tissues of 6.4 ± 0.8 mm and a 4 ± 1 mm height for the phalanx bone. The averaged deflections under loading went from 1.8 ± 0.3 mm at 2 N, 50° to 3.1 ± 0.2 mm at 4 N, 15°. Finally, the following set of parameters for a second order hyperelastic law to model the fingertip soft tissues was proposed: C01=0.59 ± 0.09 kPa and C20 = 2.65 ± 0.88 kPa.
These data should facilitate further efforts on fingertip finite element modeling.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2017.11.024</identifier><identifier>PMID: 29217092</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adult ; Biomechanical Phenomena ; Biomechanics ; Compression ; Compression tests ; Computer simulation ; Engineering Sciences ; Experimental compressions ; Experiments ; Finger ; Fingers - diagnostic imaging ; Fingertip ; Finite element ; Finite Element Analysis ; Finite element method ; Humans ; Hyperelasticity ; Magnetic Resonance Imaging ; Male ; Mathematical models ; Mechanical analysis ; Mechanical loading ; Mechanical Phenomena ; Mechanics ; Modelling ; Models, Biological ; MRI ; NMR ; Nuclear magnetic resonance ; Order parameters ; Parameter identification ; Pressure ; Pulp ; Simulation ; Soft tissues ; Stress, Mechanical ; Studies</subject><ispartof>Journal of biomechanics, 2018-01, Vol.67, p.166-171</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-23a36d01fba7fc868e38c041ec11c2e92eaf28ed71596afa4b12aebaceed4eda3</citedby><cites>FETCH-LOGICAL-c478t-23a36d01fba7fc868e38c041ec11c2e92eaf28ed71596afa4b12aebaceed4eda3</cites><orcidid>0000-0002-4928-8434 ; 0000-0001-9245-738X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29217092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01801874$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dallard, Jérémy</creatorcontrib><creatorcontrib>Merlhiot, Xavier</creatorcontrib><creatorcontrib>Petitjean, Noémie</creatorcontrib><creatorcontrib>Duprey, Sonia</creatorcontrib><title>MRI-based experimentations of fingertip flat compression: Geometrical measurements and finite element inverse simulations to investigate material property parameters</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Modeling human-object interactions is a necessary step in the ergonomic assessment of products. Fingertip finite element models can help investigating these interactions, if they are built based on realistic geometrical data and material properties. The aim of this study was to investigate the fingertip geometry and its mechanical response under compression, and to identify the parameters of a hyperelastic material property associated to the fingertip soft tissues.
Fingertip compression tests in an MRI device were performed on 5 subjects at either 2 or 4 N and at 15° or 50°. The MRI images allowed to document both the internal and external fingertip dimensions and to build 5 subject-specific finite element models. Simulations reproducing the fingertip compression tests were run to obtain the material property parameters of the soft tissues.
Results indicated that two ellipses in the sagittal and longitudinal plane could describe the external fingertip geometry. The internal geometries indicated an averaged maximal thickness of soft tissues of 6.4 ± 0.8 mm and a 4 ± 1 mm height for the phalanx bone. The averaged deflections under loading went from 1.8 ± 0.3 mm at 2 N, 50° to 3.1 ± 0.2 mm at 4 N, 15°. Finally, the following set of parameters for a second order hyperelastic law to model the fingertip soft tissues was proposed: C01=0.59 ± 0.09 kPa and C20 = 2.65 ± 0.88 kPa.
These data should facilitate further efforts on fingertip finite element modeling.</description><subject>Adult</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Computer simulation</subject><subject>Engineering Sciences</subject><subject>Experimental compressions</subject><subject>Experiments</subject><subject>Finger</subject><subject>Fingers - diagnostic imaging</subject><subject>Fingertip</subject><subject>Finite element</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Humans</subject><subject>Hyperelasticity</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Mechanical analysis</subject><subject>Mechanical loading</subject><subject>Mechanical Phenomena</subject><subject>Mechanics</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>MRI</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Order parameters</subject><subject>Parameter identification</subject><subject>Pressure</subject><subject>Pulp</subject><subject>Simulation</subject><subject>Soft tissues</subject><subject>Stress, Mechanical</subject><subject>Studies</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxiMEokvhFSpLXOCwweOkccKJqoK20iIkBGdr4kxar5I42M6KPhDvyWx32wMXJMuWxr9v_n1ZdgYyBwnVh22-bZ0fyd7lSoLOAXKpymfZCmpdrFVRy-fZSkoF60Y18iR7FeNWSqlL3bzMTlSjQMtGrbI_X7_frFuM1An6PVNwI00Jk_NTFL4XvZtuKSQ3i37AJKwf50Ax8vdHcUVcPwVncRAjYVwC7cVR4NTthS6RoOEhJty0oxBJRDcuwzF98g_hmNwtMjryFRznmoPnRtK9mDEgV2Dh6-xFj0OkN8f3NPv55fOPy-v15tvVzeXFZm1LXSceG4uqk9C3qHtbVzUVtZUlkAWwihpF2KuaOg3nTYU9li0opBYtUVdSh8Vp9v6Q9w4HM_MyMNwbj85cX2zMPiah5qPLHTD77sByv78WHsOMLloaBpzIL9FAo88llEVTMPr2H3TrlzDxJEzVWhey0TVT1YGywccYqH_qAKTZm2625tF0szfdABg2nYVnx_RLO1L3JHt0mYFPB4B4dztHwUTraLLUuUA2mc67_9X4C83HxmI</recordid><startdate>20180123</startdate><enddate>20180123</enddate><creator>Dallard, Jérémy</creator><creator>Merlhiot, Xavier</creator><creator>Petitjean, Noémie</creator><creator>Duprey, Sonia</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4928-8434</orcidid><orcidid>https://orcid.org/0000-0001-9245-738X</orcidid></search><sort><creationdate>20180123</creationdate><title>MRI-based experimentations of fingertip flat compression: Geometrical measurements and finite element inverse simulations to investigate material property parameters</title><author>Dallard, Jérémy ; Merlhiot, Xavier ; Petitjean, Noémie ; Duprey, Sonia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-23a36d01fba7fc868e38c041ec11c2e92eaf28ed71596afa4b12aebaceed4eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Computer simulation</topic><topic>Engineering Sciences</topic><topic>Experimental compressions</topic><topic>Experiments</topic><topic>Finger</topic><topic>Fingers - diagnostic imaging</topic><topic>Fingertip</topic><topic>Finite element</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Humans</topic><topic>Hyperelasticity</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Mechanical analysis</topic><topic>Mechanical loading</topic><topic>Mechanical Phenomena</topic><topic>Mechanics</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>MRI</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Order parameters</topic><topic>Parameter identification</topic><topic>Pressure</topic><topic>Pulp</topic><topic>Simulation</topic><topic>Soft tissues</topic><topic>Stress, Mechanical</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dallard, Jérémy</creatorcontrib><creatorcontrib>Merlhiot, Xavier</creatorcontrib><creatorcontrib>Petitjean, Noémie</creatorcontrib><creatorcontrib>Duprey, Sonia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dallard, Jérémy</au><au>Merlhiot, Xavier</au><au>Petitjean, Noémie</au><au>Duprey, Sonia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI-based experimentations of fingertip flat compression: Geometrical measurements and finite element inverse simulations to investigate material property parameters</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2018-01-23</date><risdate>2018</risdate><volume>67</volume><spage>166</spage><epage>171</epage><pages>166-171</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Modeling human-object interactions is a necessary step in the ergonomic assessment of products. Fingertip finite element models can help investigating these interactions, if they are built based on realistic geometrical data and material properties. The aim of this study was to investigate the fingertip geometry and its mechanical response under compression, and to identify the parameters of a hyperelastic material property associated to the fingertip soft tissues.
Fingertip compression tests in an MRI device were performed on 5 subjects at either 2 or 4 N and at 15° or 50°. The MRI images allowed to document both the internal and external fingertip dimensions and to build 5 subject-specific finite element models. Simulations reproducing the fingertip compression tests were run to obtain the material property parameters of the soft tissues.
Results indicated that two ellipses in the sagittal and longitudinal plane could describe the external fingertip geometry. The internal geometries indicated an averaged maximal thickness of soft tissues of 6.4 ± 0.8 mm and a 4 ± 1 mm height for the phalanx bone. The averaged deflections under loading went from 1.8 ± 0.3 mm at 2 N, 50° to 3.1 ± 0.2 mm at 4 N, 15°. Finally, the following set of parameters for a second order hyperelastic law to model the fingertip soft tissues was proposed: C01=0.59 ± 0.09 kPa and C20 = 2.65 ± 0.88 kPa.
These data should facilitate further efforts on fingertip finite element modeling.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>29217092</pmid><doi>10.1016/j.jbiomech.2017.11.024</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4928-8434</orcidid><orcidid>https://orcid.org/0000-0001-9245-738X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2018-01, Vol.67, p.166-171 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01801874v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Adult Biomechanical Phenomena Biomechanics Compression Compression tests Computer simulation Engineering Sciences Experimental compressions Experiments Finger Fingers - diagnostic imaging Fingertip Finite element Finite Element Analysis Finite element method Humans Hyperelasticity Magnetic Resonance Imaging Male Mathematical models Mechanical analysis Mechanical loading Mechanical Phenomena Mechanics Modelling Models, Biological MRI NMR Nuclear magnetic resonance Order parameters Parameter identification Pressure Pulp Simulation Soft tissues Stress, Mechanical Studies |
title | MRI-based experimentations of fingertip flat compression: Geometrical measurements and finite element inverse simulations to investigate material property parameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI-based%20experimentations%20of%20fingertip%20flat%20compression:%20Geometrical%20measurements%20and%20finite%20element%20inverse%20simulations%20to%20investigate%20material%20property%20parameters&rft.jtitle=Journal%20of%20biomechanics&rft.au=Dallard,%20J%C3%A9r%C3%A9my&rft.date=2018-01-23&rft.volume=67&rft.spage=166&rft.epage=171&rft.pages=166-171&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2017.11.024&rft_dat=%3Cproquest_hal_p%3E1987730978%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-23a36d01fba7fc868e38c041ec11c2e92eaf28ed71596afa4b12aebaceed4eda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1987730978&rft_id=info:pmid/29217092&rfr_iscdi=true |