Loading…
Analysis of Non-Equilibrium Fluctuations In A Ternary Liquid Mixture
From the benchmark values of the diffusion and thermodiffusion coefficients of the tetralin, isobutylbenzene and n-dodecane ternary mixture, and the published optical contrast factors, we have evaluated the theoretical amplitudes of the two composition modes of the refractive-index fluctuations. Sha...
Saved in:
Published in: | Microgravity science and technology 2016-12, Vol.28 (6), p.611-619 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-3b3336dc855843c517186c54b7bbf04b486acf98d289c21070185ace31f8a3ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-3b3336dc855843c517186c54b7bbf04b486acf98d289c21070185ace31f8a3ed3 |
container_end_page | 619 |
container_issue | 6 |
container_start_page | 611 |
container_title | Microgravity science and technology |
container_volume | 28 |
creator | Bataller, Henri Giraudet, Cédric Croccolo, Fabrizio Ortiz de Zárate, José Maria |
description | From the benchmark values of the diffusion and thermodiffusion coefficients of the tetralin, isobutylbenzene and n-dodecane ternary mixture, and the published optical contrast factors, we have evaluated the theoretical amplitudes of the two composition modes of the refractive-index fluctuations. Shadowgraph experiments have been performed on ground, where the current theory is expected to be correct only for large wave vectors. Two decay times have been observed experimentally. The fastest one being related to the thermal diffusivity of the mixture, while the slower one to mass diffusion. Hence, it has not been possible to distinguish the two eigenvalues of the mass diffusion matrix, a problem also encountered in traditional light-scattering with ternary mixtures of similar-size molecules. Thus, to compare the measured Intermediate Scattering Function with theory, we fix the amplitudes and decay rates to the benchmark values, use the wave number as a fitting parameter, and compare it to the experimental wave number. The good agreement between theory and experiments for the larger wave numbers validates the theory developed for the microgravity conditions. |
doi_str_mv | 10.1007/s12217-016-9517-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01803252v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4246846641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-3b3336dc855843c517186c54b7bbf04b486acf98d289c21070185ace31f8a3ed3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9giMTEEznbsOGNUKK0UYCmz5TgOuEqT1k4Q_fc4CkIsTGedv_fu6SF0jeEOA6T3HhOC0xgwjzMWHvwEzbBIWQxJlpyiGWRUhF8Q5-jC-y0AJzghM_SQt6o5euujro5eujZ-PAy2saWzwy5aNoPuB9XbrvXRuo3yaGNcq9wxKmzAqujZfvWDM5forFaNN1c_c47elo-bxSouXp_Wi7yINWXQx7SklPJKC8ZEQnWIiQXXLCnTsqwhKRPBla4zURGRaYIhBSyY0obiWihqKjpHt5Pvh2rk3tldiCI7ZeUqL-S4CwKghJFPHNibid277jAY38ttN4TwjZdY0HCfCBgpPFHadd47U__aYpBjsXIqNjhzORYredCQSeMD274b98f5X9E31LR4sA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1838432801</pqid></control><display><type>article</type><title>Analysis of Non-Equilibrium Fluctuations In A Ternary Liquid Mixture</title><source>Springer Link</source><creator>Bataller, Henri ; Giraudet, Cédric ; Croccolo, Fabrizio ; Ortiz de Zárate, José Maria</creator><creatorcontrib>Bataller, Henri ; Giraudet, Cédric ; Croccolo, Fabrizio ; Ortiz de Zárate, José Maria</creatorcontrib><description>From the benchmark values of the diffusion and thermodiffusion coefficients of the tetralin, isobutylbenzene and n-dodecane ternary mixture, and the published optical contrast factors, we have evaluated the theoretical amplitudes of the two composition modes of the refractive-index fluctuations. Shadowgraph experiments have been performed on ground, where the current theory is expected to be correct only for large wave vectors. Two decay times have been observed experimentally. The fastest one being related to the thermal diffusivity of the mixture, while the slower one to mass diffusion. Hence, it has not been possible to distinguish the two eigenvalues of the mass diffusion matrix, a problem also encountered in traditional light-scattering with ternary mixtures of similar-size molecules. Thus, to compare the measured Intermediate Scattering Function with theory, we fix the amplitudes and decay rates to the benchmark values, use the wave number as a fitting parameter, and compare it to the experimental wave number. The good agreement between theory and experiments for the larger wave numbers validates the theory developed for the microgravity conditions.</description><identifier>ISSN: 0938-0108</identifier><identifier>EISSN: 1875-0494</identifier><identifier>DOI: 10.1007/s12217-016-9517-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Advances in gravity-related phenomena in biological ; Aerospace Technology and Astronautics ; chemical and physical systems ; Classical and Continuum Physics ; Decay ; Earth Sciences ; Engineering ; Engineering Sciences ; Fluctuations ; Fluids mechanics ; Geophysics ; Mechanical engineering ; Mechanics ; Mechanics of materials ; Original Article ; Physics ; Sciences of the Universe ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Thermal diffusivity</subject><ispartof>Microgravity science and technology, 2016-12, Vol.28 (6), p.611-619</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-3b3336dc855843c517186c54b7bbf04b486acf98d289c21070185ace31f8a3ed3</citedby><cites>FETCH-LOGICAL-c350t-3b3336dc855843c517186c54b7bbf04b486acf98d289c21070185ace31f8a3ed3</cites><orcidid>0000-0002-4028-0700 ; 0000-0001-6832-400X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01803252$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bataller, Henri</creatorcontrib><creatorcontrib>Giraudet, Cédric</creatorcontrib><creatorcontrib>Croccolo, Fabrizio</creatorcontrib><creatorcontrib>Ortiz de Zárate, José Maria</creatorcontrib><title>Analysis of Non-Equilibrium Fluctuations In A Ternary Liquid Mixture</title><title>Microgravity science and technology</title><addtitle>Microgravity Sci. Technol</addtitle><description>From the benchmark values of the diffusion and thermodiffusion coefficients of the tetralin, isobutylbenzene and n-dodecane ternary mixture, and the published optical contrast factors, we have evaluated the theoretical amplitudes of the two composition modes of the refractive-index fluctuations. Shadowgraph experiments have been performed on ground, where the current theory is expected to be correct only for large wave vectors. Two decay times have been observed experimentally. The fastest one being related to the thermal diffusivity of the mixture, while the slower one to mass diffusion. Hence, it has not been possible to distinguish the two eigenvalues of the mass diffusion matrix, a problem also encountered in traditional light-scattering with ternary mixtures of similar-size molecules. Thus, to compare the measured Intermediate Scattering Function with theory, we fix the amplitudes and decay rates to the benchmark values, use the wave number as a fitting parameter, and compare it to the experimental wave number. The good agreement between theory and experiments for the larger wave numbers validates the theory developed for the microgravity conditions.</description><subject>Advances in gravity-related phenomena in biological</subject><subject>Aerospace Technology and Astronautics</subject><subject>chemical and physical systems</subject><subject>Classical and Continuum Physics</subject><subject>Decay</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Fluctuations</subject><subject>Fluids mechanics</subject><subject>Geophysics</subject><subject>Mechanical engineering</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Original Article</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Thermal diffusivity</subject><issn>0938-0108</issn><issn>1875-0494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9giMTEEznbsOGNUKK0UYCmz5TgOuEqT1k4Q_fc4CkIsTGedv_fu6SF0jeEOA6T3HhOC0xgwjzMWHvwEzbBIWQxJlpyiGWRUhF8Q5-jC-y0AJzghM_SQt6o5euujro5eujZ-PAy2saWzwy5aNoPuB9XbrvXRuo3yaGNcq9wxKmzAqujZfvWDM5forFaNN1c_c47elo-bxSouXp_Wi7yINWXQx7SklPJKC8ZEQnWIiQXXLCnTsqwhKRPBla4zURGRaYIhBSyY0obiWihqKjpHt5Pvh2rk3tldiCI7ZeUqL-S4CwKghJFPHNibid277jAY38ttN4TwjZdY0HCfCBgpPFHadd47U__aYpBjsXIqNjhzORYredCQSeMD274b98f5X9E31LR4sA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Bataller, Henri</creator><creator>Giraudet, Cédric</creator><creator>Croccolo, Fabrizio</creator><creator>Ortiz de Zárate, José Maria</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7TG</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>L7M</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4028-0700</orcidid><orcidid>https://orcid.org/0000-0001-6832-400X</orcidid></search><sort><creationdate>20161201</creationdate><title>Analysis of Non-Equilibrium Fluctuations In A Ternary Liquid Mixture</title><author>Bataller, Henri ; Giraudet, Cédric ; Croccolo, Fabrizio ; Ortiz de Zárate, José Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-3b3336dc855843c517186c54b7bbf04b486acf98d289c21070185ace31f8a3ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advances in gravity-related phenomena in biological</topic><topic>Aerospace Technology and Astronautics</topic><topic>chemical and physical systems</topic><topic>Classical and Continuum Physics</topic><topic>Decay</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Fluctuations</topic><topic>Fluids mechanics</topic><topic>Geophysics</topic><topic>Mechanical engineering</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Original Article</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Thermal diffusivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bataller, Henri</creatorcontrib><creatorcontrib>Giraudet, Cédric</creatorcontrib><creatorcontrib>Croccolo, Fabrizio</creatorcontrib><creatorcontrib>Ortiz de Zárate, José Maria</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Microgravity science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bataller, Henri</au><au>Giraudet, Cédric</au><au>Croccolo, Fabrizio</au><au>Ortiz de Zárate, José Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Non-Equilibrium Fluctuations In A Ternary Liquid Mixture</atitle><jtitle>Microgravity science and technology</jtitle><stitle>Microgravity Sci. Technol</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>28</volume><issue>6</issue><spage>611</spage><epage>619</epage><pages>611-619</pages><issn>0938-0108</issn><eissn>1875-0494</eissn><abstract>From the benchmark values of the diffusion and thermodiffusion coefficients of the tetralin, isobutylbenzene and n-dodecane ternary mixture, and the published optical contrast factors, we have evaluated the theoretical amplitudes of the two composition modes of the refractive-index fluctuations. Shadowgraph experiments have been performed on ground, where the current theory is expected to be correct only for large wave vectors. Two decay times have been observed experimentally. The fastest one being related to the thermal diffusivity of the mixture, while the slower one to mass diffusion. Hence, it has not been possible to distinguish the two eigenvalues of the mass diffusion matrix, a problem also encountered in traditional light-scattering with ternary mixtures of similar-size molecules. Thus, to compare the measured Intermediate Scattering Function with theory, we fix the amplitudes and decay rates to the benchmark values, use the wave number as a fitting parameter, and compare it to the experimental wave number. The good agreement between theory and experiments for the larger wave numbers validates the theory developed for the microgravity conditions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12217-016-9517-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4028-0700</orcidid><orcidid>https://orcid.org/0000-0001-6832-400X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-0108 |
ispartof | Microgravity science and technology, 2016-12, Vol.28 (6), p.611-619 |
issn | 0938-0108 1875-0494 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01803252v1 |
source | Springer Link |
subjects | Advances in gravity-related phenomena in biological Aerospace Technology and Astronautics chemical and physical systems Classical and Continuum Physics Decay Earth Sciences Engineering Engineering Sciences Fluctuations Fluids mechanics Geophysics Mechanical engineering Mechanics Mechanics of materials Original Article Physics Sciences of the Universe Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Thermal diffusivity |
title | Analysis of Non-Equilibrium Fluctuations In A Ternary Liquid Mixture |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Non-Equilibrium%20Fluctuations%20In%20A%20Ternary%20Liquid%20Mixture&rft.jtitle=Microgravity%20science%20and%20technology&rft.au=Bataller,%20Henri&rft.date=2016-12-01&rft.volume=28&rft.issue=6&rft.spage=611&rft.epage=619&rft.pages=611-619&rft.issn=0938-0108&rft.eissn=1875-0494&rft_id=info:doi/10.1007/s12217-016-9517-6&rft_dat=%3Cproquest_hal_p%3E4246846641%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-3b3336dc855843c517186c54b7bbf04b486acf98d289c21070185ace31f8a3ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1838432801&rft_id=info:pmid/&rfr_iscdi=true |