Loading…

Novel highly scalable carbon nanotube-strengthened ceramics by high shear compaction and spark plasma sintering

We report a new strategy, based on high shear compaction and spark plasma sintering, for the massive and low cost production of 100% dense ceramics containing carbon nanotubes. Custom forming and stacking of flexible green sheets of record-breaking dimensions can yield an unlimited range of three-di...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the European Ceramic Society 2015-09, Vol.35 (9), p.2599-2606
Main Authors: Dassios, Konstantinos G., Bonnefont, Guillaume, Fantozzi, Gilbert, Matikas, Theodore E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c494t-dbab001001ee2bfb0688bd1733983e4ceca341d0c11848c89752258f8496ba6b3
cites cdi_FETCH-LOGICAL-c494t-dbab001001ee2bfb0688bd1733983e4ceca341d0c11848c89752258f8496ba6b3
container_end_page 2606
container_issue 9
container_start_page 2599
container_title Journal of the European Ceramic Society
container_volume 35
creator Dassios, Konstantinos G.
Bonnefont, Guillaume
Fantozzi, Gilbert
Matikas, Theodore E.
description We report a new strategy, based on high shear compaction and spark plasma sintering, for the massive and low cost production of 100% dense ceramics containing carbon nanotubes. Custom forming and stacking of flexible green sheets of record-breaking dimensions can yield an unlimited range of three-dimensional structures. The strategy was successfully validated in the production of multi-walled carbon nanotube/Pyrex glass materials of tube loadings in the range of 0–1.5wt.% while no major factors limit applicability to other types of materials. Improvements in the four elastic constants of the material, Young's modulus, shear modulus, Poisson's ratio and bulk modulus, assessed by means of a non-destructive technique based on ultrasonics, were found maximum at a tube loading of 0.5wt.% Microstructural investigations indicating the existence of highly dissipating nanoscale-specific toughening mechanisms acting complementary to nanotube bridging and pull-out indicate a high application potential in a wide range of reinforcing and multifunctional applications.
doi_str_mv 10.1016/j.jeurceramsoc.2015.03.003
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01804707v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955221915000977</els_id><sourcerecordid>S0955221915000977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-dbab001001ee2bfb0688bd1733983e4ceca341d0c11848c89752258f8496ba6b3</originalsourceid><addsrcrecordid>eNqNkE9rGzEQxUVJoU7a7yB6y2E3o9X-kXoLSRMXTHtJIDcx0o69cteSkTYGf_us41J6LAwMDO_3ZuYx9lVAKUC0N9tyS6_JUcJdjq6sQDQlyBJAfmALoTpZtEK_XLAF6KYpqkroT-wy5y2A6EDrBYs_44FGPvjNMB55djiiHYk7TDYGHjDE6dVSkadEYTMNFKjn7-u8y9we30GeB8LEXdzt0U1-5jD0PO8x_eb7EfMOefZhouTD5jP7uMYx05c__Yo9P3x_ulsWq1-PP-5uV4WrdT0VvUU73zgXUWXXFlqlbC86KbWSVDtyKGvRgxNC1cop3TVV1ai1qnVrsbXyil2ffQcczT75HaajiejN8nZlTjMQCuoOuoOYtd_OWpdizonWfwEB5hSz2Zp_YzanmA1IM8c8w_dnmOZvDp6Syc5TcNT7RG4yffT_Y_MGXBiPRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Novel highly scalable carbon nanotube-strengthened ceramics by high shear compaction and spark plasma sintering</title><source>ScienceDirect Journals</source><creator>Dassios, Konstantinos G. ; Bonnefont, Guillaume ; Fantozzi, Gilbert ; Matikas, Theodore E.</creator><creatorcontrib>Dassios, Konstantinos G. ; Bonnefont, Guillaume ; Fantozzi, Gilbert ; Matikas, Theodore E.</creatorcontrib><description>We report a new strategy, based on high shear compaction and spark plasma sintering, for the massive and low cost production of 100% dense ceramics containing carbon nanotubes. Custom forming and stacking of flexible green sheets of record-breaking dimensions can yield an unlimited range of three-dimensional structures. The strategy was successfully validated in the production of multi-walled carbon nanotube/Pyrex glass materials of tube loadings in the range of 0–1.5wt.% while no major factors limit applicability to other types of materials. Improvements in the four elastic constants of the material, Young's modulus, shear modulus, Poisson's ratio and bulk modulus, assessed by means of a non-destructive technique based on ultrasonics, were found maximum at a tube loading of 0.5wt.% Microstructural investigations indicating the existence of highly dissipating nanoscale-specific toughening mechanisms acting complementary to nanotube bridging and pull-out indicate a high application potential in a wide range of reinforcing and multifunctional applications.</description><identifier>ISSN: 0955-2219</identifier><identifier>EISSN: 1873-619X</identifier><identifier>DOI: 10.1016/j.jeurceramsoc.2015.03.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Carbon nanotubes ; Ceramic matrix composites ; Elastic properties ; Engineering Sciences ; Glass matrix composites ; Materials ; Nanocomposites</subject><ispartof>Journal of the European Ceramic Society, 2015-09, Vol.35 (9), p.2599-2606</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-dbab001001ee2bfb0688bd1733983e4ceca341d0c11848c89752258f8496ba6b3</citedby><cites>FETCH-LOGICAL-c494t-dbab001001ee2bfb0688bd1733983e4ceca341d0c11848c89752258f8496ba6b3</cites><orcidid>0000-0003-2045-8900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01804707$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dassios, Konstantinos G.</creatorcontrib><creatorcontrib>Bonnefont, Guillaume</creatorcontrib><creatorcontrib>Fantozzi, Gilbert</creatorcontrib><creatorcontrib>Matikas, Theodore E.</creatorcontrib><title>Novel highly scalable carbon nanotube-strengthened ceramics by high shear compaction and spark plasma sintering</title><title>Journal of the European Ceramic Society</title><description>We report a new strategy, based on high shear compaction and spark plasma sintering, for the massive and low cost production of 100% dense ceramics containing carbon nanotubes. Custom forming and stacking of flexible green sheets of record-breaking dimensions can yield an unlimited range of three-dimensional structures. The strategy was successfully validated in the production of multi-walled carbon nanotube/Pyrex glass materials of tube loadings in the range of 0–1.5wt.% while no major factors limit applicability to other types of materials. Improvements in the four elastic constants of the material, Young's modulus, shear modulus, Poisson's ratio and bulk modulus, assessed by means of a non-destructive technique based on ultrasonics, were found maximum at a tube loading of 0.5wt.% Microstructural investigations indicating the existence of highly dissipating nanoscale-specific toughening mechanisms acting complementary to nanotube bridging and pull-out indicate a high application potential in a wide range of reinforcing and multifunctional applications.</description><subject>Carbon nanotubes</subject><subject>Ceramic matrix composites</subject><subject>Elastic properties</subject><subject>Engineering Sciences</subject><subject>Glass matrix composites</subject><subject>Materials</subject><subject>Nanocomposites</subject><issn>0955-2219</issn><issn>1873-619X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE9rGzEQxUVJoU7a7yB6y2E3o9X-kXoLSRMXTHtJIDcx0o69cteSkTYGf_us41J6LAwMDO_3ZuYx9lVAKUC0N9tyS6_JUcJdjq6sQDQlyBJAfmALoTpZtEK_XLAF6KYpqkroT-wy5y2A6EDrBYs_44FGPvjNMB55djiiHYk7TDYGHjDE6dVSkadEYTMNFKjn7-u8y9we30GeB8LEXdzt0U1-5jD0PO8x_eb7EfMOefZhouTD5jP7uMYx05c__Yo9P3x_ulsWq1-PP-5uV4WrdT0VvUU73zgXUWXXFlqlbC86KbWSVDtyKGvRgxNC1cop3TVV1ai1qnVrsbXyil2ffQcczT75HaajiejN8nZlTjMQCuoOuoOYtd_OWpdizonWfwEB5hSz2Zp_YzanmA1IM8c8w_dnmOZvDp6Syc5TcNT7RG4yffT_Y_MGXBiPRQ</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Dassios, Konstantinos G.</creator><creator>Bonnefont, Guillaume</creator><creator>Fantozzi, Gilbert</creator><creator>Matikas, Theodore E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2045-8900</orcidid></search><sort><creationdate>20150901</creationdate><title>Novel highly scalable carbon nanotube-strengthened ceramics by high shear compaction and spark plasma sintering</title><author>Dassios, Konstantinos G. ; Bonnefont, Guillaume ; Fantozzi, Gilbert ; Matikas, Theodore E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-dbab001001ee2bfb0688bd1733983e4ceca341d0c11848c89752258f8496ba6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon nanotubes</topic><topic>Ceramic matrix composites</topic><topic>Elastic properties</topic><topic>Engineering Sciences</topic><topic>Glass matrix composites</topic><topic>Materials</topic><topic>Nanocomposites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dassios, Konstantinos G.</creatorcontrib><creatorcontrib>Bonnefont, Guillaume</creatorcontrib><creatorcontrib>Fantozzi, Gilbert</creatorcontrib><creatorcontrib>Matikas, Theodore E.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the European Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dassios, Konstantinos G.</au><au>Bonnefont, Guillaume</au><au>Fantozzi, Gilbert</au><au>Matikas, Theodore E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel highly scalable carbon nanotube-strengthened ceramics by high shear compaction and spark plasma sintering</atitle><jtitle>Journal of the European Ceramic Society</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>35</volume><issue>9</issue><spage>2599</spage><epage>2606</epage><pages>2599-2606</pages><issn>0955-2219</issn><eissn>1873-619X</eissn><abstract>We report a new strategy, based on high shear compaction and spark plasma sintering, for the massive and low cost production of 100% dense ceramics containing carbon nanotubes. Custom forming and stacking of flexible green sheets of record-breaking dimensions can yield an unlimited range of three-dimensional structures. The strategy was successfully validated in the production of multi-walled carbon nanotube/Pyrex glass materials of tube loadings in the range of 0–1.5wt.% while no major factors limit applicability to other types of materials. Improvements in the four elastic constants of the material, Young's modulus, shear modulus, Poisson's ratio and bulk modulus, assessed by means of a non-destructive technique based on ultrasonics, were found maximum at a tube loading of 0.5wt.% Microstructural investigations indicating the existence of highly dissipating nanoscale-specific toughening mechanisms acting complementary to nanotube bridging and pull-out indicate a high application potential in a wide range of reinforcing and multifunctional applications.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jeurceramsoc.2015.03.003</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2045-8900</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0955-2219
ispartof Journal of the European Ceramic Society, 2015-09, Vol.35 (9), p.2599-2606
issn 0955-2219
1873-619X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01804707v1
source ScienceDirect Journals
subjects Carbon nanotubes
Ceramic matrix composites
Elastic properties
Engineering Sciences
Glass matrix composites
Materials
Nanocomposites
title Novel highly scalable carbon nanotube-strengthened ceramics by high shear compaction and spark plasma sintering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20highly%20scalable%20carbon%20nanotube-strengthened%20ceramics%20by%20high%20shear%20compaction%20and%20spark%20plasma%20sintering&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.au=Dassios,%20Konstantinos%20G.&rft.date=2015-09-01&rft.volume=35&rft.issue=9&rft.spage=2599&rft.epage=2606&rft.pages=2599-2606&rft.issn=0955-2219&rft.eissn=1873-619X&rft_id=info:doi/10.1016/j.jeurceramsoc.2015.03.003&rft_dat=%3Celsevier_hal_p%3ES0955221915000977%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c494t-dbab001001ee2bfb0688bd1733983e4ceca341d0c11848c89752258f8496ba6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true