Loading…
The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations
The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in...
Saved in:
Published in: | Earth and planetary science letters 2015-10, Vol.427, p.160-170 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3 |
container_end_page | 170 |
container_issue | |
container_start_page | 160 |
container_title | Earth and planetary science letters |
container_volume | 427 |
creator | Cauquoin, A. Jean-Baptiste, P. Risi, C. Fourré, É. Stenni, B. Landais, A. |
description | The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in water. These simulations were obtained using a version of the LMDZ General Circulation Model enhanced by water isotopes diagnostics, LMDZ-iso. To avoid tritium generated by nuclear bomb testing, the simulations have been evaluated against a compilation of published tritium datasets dating from before 1950, or measured recently. LMDZ-iso correctly captures the observed tritium enrichment in precipitation as oceanic air moves inland (the so-called continental effect) and the observed north–south variations due to the latitudinal dependency of the cosmogenic tritium production rate. The seasonal variability, linked to the stratospheric intrusions of air masses with higher tritium content into the troposphere, is correctly reproduced for Antarctica with a maximum in winter. LMDZ-iso reproduces the spring maximum of tritium over Europe, but underestimates it and produces a peak in winter that is not apparent in the data. This implementation of tritium in a GCM promises to provide a better constraint on: (1) the intrusions and transport of air masses from the stratosphere, and (2) the dynamics of the modelled water cycle. The method complements the existing approach of using stable water isotopes.
•Natural tritium (HTO) has been implemented in the AGCM LMDZ-iso.•LMDZ-iso correctly captures the observed continental and latitudinal effects.•Best results with the lower range of Masarik and Beer production rate (−30%).•We reproduce the tritium winter peak in Antarctica due to stratospheric injections. |
doi_str_mv | 10.1016/j.epsl.2015.06.043 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01806115v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X15004069</els_id><sourcerecordid>1709169024</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhk1podskL5CTju3BrmSvtTb0sixtUtiSSwq5ibE07s4iW64kb8l79IEr75YcS0-Cn-8bRvNn2a3gheBCfjwWOAVblFzUBZcFX1evspWomjrnonp6na04F2XelOLpbfYuhCPnXNayXWW_Hw_IfljXgWWGQvTUzZHcyFzPRoizT3kKI80Do5FNHjVNFOHMBBpmCxEN-0XxwGBk2zi4MB3Qk2Z3OOKi78jrBVuMb86gTaBh2g0TeAopPMuuC-hPZypcZ296sAFv_r5X2fcvnx939_n-4e7rbrvPYV1WMe-h1r2BsuRd1_StqUyXfimFhLasAcCkpDUgdIsbQNNvZI-VMT10jdnIrquusg-XuQewavI0gH9WDkjdb_dqybhouBSiPonEvr-wk3c_ZwxRDRQ0WgsjujkosRFNW6_r6n9Q3grZ8nKd0PKCau9C8Ni_rCG4WppVR7U0q5ZmFZcqNZukTxcJ021OhF4FTThqNJTqico4-pf-B90tseE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709169024</pqid></control><display><type>article</type><title>The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations</title><source>ScienceDirect Freedom Collection</source><creator>Cauquoin, A. ; Jean-Baptiste, P. ; Risi, C. ; Fourré, É. ; Stenni, B. ; Landais, A.</creator><creatorcontrib>Cauquoin, A. ; Jean-Baptiste, P. ; Risi, C. ; Fourré, É. ; Stenni, B. ; Landais, A.</creatorcontrib><description>The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in water. These simulations were obtained using a version of the LMDZ General Circulation Model enhanced by water isotopes diagnostics, LMDZ-iso. To avoid tritium generated by nuclear bomb testing, the simulations have been evaluated against a compilation of published tritium datasets dating from before 1950, or measured recently. LMDZ-iso correctly captures the observed tritium enrichment in precipitation as oceanic air moves inland (the so-called continental effect) and the observed north–south variations due to the latitudinal dependency of the cosmogenic tritium production rate. The seasonal variability, linked to the stratospheric intrusions of air masses with higher tritium content into the troposphere, is correctly reproduced for Antarctica with a maximum in winter. LMDZ-iso reproduces the spring maximum of tritium over Europe, but underestimates it and produces a peak in winter that is not apparent in the data. This implementation of tritium in a GCM promises to provide a better constraint on: (1) the intrusions and transport of air masses from the stratosphere, and (2) the dynamics of the modelled water cycle. The method complements the existing approach of using stable water isotopes.
•Natural tritium (HTO) has been implemented in the AGCM LMDZ-iso.•LMDZ-iso correctly captures the observed continental and latitudinal effects.•Best results with the lower range of Masarik and Beer production rate (−30%).•We reproduce the tritium winter peak in Antarctica due to stratospheric injections.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2015.06.043</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Air masses ; Atmospheric General Circulation Models ; Computer simulation ; Continental interfaces, environment ; GCM ; hydrological cycle ; Intrusion ; Isotopes ; Ocean, Atmosphere ; Precipitation ; Sciences of the Universe ; stratospheric air intrusions ; Tritium ; Winter</subject><ispartof>Earth and planetary science letters, 2015-10, Vol.427, p.160-170</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3</citedby><cites>FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3</cites><orcidid>0000-0002-4620-4696 ; 0000-0002-2554-9660 ; 0000-0003-4950-3664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01806115$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cauquoin, A.</creatorcontrib><creatorcontrib>Jean-Baptiste, P.</creatorcontrib><creatorcontrib>Risi, C.</creatorcontrib><creatorcontrib>Fourré, É.</creatorcontrib><creatorcontrib>Stenni, B.</creatorcontrib><creatorcontrib>Landais, A.</creatorcontrib><title>The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations</title><title>Earth and planetary science letters</title><description>The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in water. These simulations were obtained using a version of the LMDZ General Circulation Model enhanced by water isotopes diagnostics, LMDZ-iso. To avoid tritium generated by nuclear bomb testing, the simulations have been evaluated against a compilation of published tritium datasets dating from before 1950, or measured recently. LMDZ-iso correctly captures the observed tritium enrichment in precipitation as oceanic air moves inland (the so-called continental effect) and the observed north–south variations due to the latitudinal dependency of the cosmogenic tritium production rate. The seasonal variability, linked to the stratospheric intrusions of air masses with higher tritium content into the troposphere, is correctly reproduced for Antarctica with a maximum in winter. LMDZ-iso reproduces the spring maximum of tritium over Europe, but underestimates it and produces a peak in winter that is not apparent in the data. This implementation of tritium in a GCM promises to provide a better constraint on: (1) the intrusions and transport of air masses from the stratosphere, and (2) the dynamics of the modelled water cycle. The method complements the existing approach of using stable water isotopes.
•Natural tritium (HTO) has been implemented in the AGCM LMDZ-iso.•LMDZ-iso correctly captures the observed continental and latitudinal effects.•Best results with the lower range of Masarik and Beer production rate (−30%).•We reproduce the tritium winter peak in Antarctica due to stratospheric injections.</description><subject>Air masses</subject><subject>Atmospheric General Circulation Models</subject><subject>Computer simulation</subject><subject>Continental interfaces, environment</subject><subject>GCM</subject><subject>hydrological cycle</subject><subject>Intrusion</subject><subject>Isotopes</subject><subject>Ocean, Atmosphere</subject><subject>Precipitation</subject><subject>Sciences of the Universe</subject><subject>stratospheric air intrusions</subject><subject>Tritium</subject><subject>Winter</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhk1podskL5CTju3BrmSvtTb0sixtUtiSSwq5ibE07s4iW64kb8l79IEr75YcS0-Cn-8bRvNn2a3gheBCfjwWOAVblFzUBZcFX1evspWomjrnonp6na04F2XelOLpbfYuhCPnXNayXWW_Hw_IfljXgWWGQvTUzZHcyFzPRoizT3kKI80Do5FNHjVNFOHMBBpmCxEN-0XxwGBk2zi4MB3Qk2Z3OOKi78jrBVuMb86gTaBh2g0TeAopPMuuC-hPZypcZ296sAFv_r5X2fcvnx939_n-4e7rbrvPYV1WMe-h1r2BsuRd1_StqUyXfimFhLasAcCkpDUgdIsbQNNvZI-VMT10jdnIrquusg-XuQewavI0gH9WDkjdb_dqybhouBSiPonEvr-wk3c_ZwxRDRQ0WgsjujkosRFNW6_r6n9Q3grZ8nKd0PKCau9C8Ni_rCG4WppVR7U0q5ZmFZcqNZukTxcJ021OhF4FTThqNJTqico4-pf-B90tseE</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Cauquoin, A.</creator><creator>Jean-Baptiste, P.</creator><creator>Risi, C.</creator><creator>Fourré, É.</creator><creator>Stenni, B.</creator><creator>Landais, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4620-4696</orcidid><orcidid>https://orcid.org/0000-0002-2554-9660</orcidid><orcidid>https://orcid.org/0000-0003-4950-3664</orcidid></search><sort><creationdate>20151001</creationdate><title>The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations</title><author>Cauquoin, A. ; Jean-Baptiste, P. ; Risi, C. ; Fourré, É. ; Stenni, B. ; Landais, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air masses</topic><topic>Atmospheric General Circulation Models</topic><topic>Computer simulation</topic><topic>Continental interfaces, environment</topic><topic>GCM</topic><topic>hydrological cycle</topic><topic>Intrusion</topic><topic>Isotopes</topic><topic>Ocean, Atmosphere</topic><topic>Precipitation</topic><topic>Sciences of the Universe</topic><topic>stratospheric air intrusions</topic><topic>Tritium</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cauquoin, A.</creatorcontrib><creatorcontrib>Jean-Baptiste, P.</creatorcontrib><creatorcontrib>Risi, C.</creatorcontrib><creatorcontrib>Fourré, É.</creatorcontrib><creatorcontrib>Stenni, B.</creatorcontrib><creatorcontrib>Landais, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cauquoin, A.</au><au>Jean-Baptiste, P.</au><au>Risi, C.</au><au>Fourré, É.</au><au>Stenni, B.</au><au>Landais, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations</atitle><jtitle>Earth and planetary science letters</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>427</volume><spage>160</spage><epage>170</epage><pages>160-170</pages><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in water. These simulations were obtained using a version of the LMDZ General Circulation Model enhanced by water isotopes diagnostics, LMDZ-iso. To avoid tritium generated by nuclear bomb testing, the simulations have been evaluated against a compilation of published tritium datasets dating from before 1950, or measured recently. LMDZ-iso correctly captures the observed tritium enrichment in precipitation as oceanic air moves inland (the so-called continental effect) and the observed north–south variations due to the latitudinal dependency of the cosmogenic tritium production rate. The seasonal variability, linked to the stratospheric intrusions of air masses with higher tritium content into the troposphere, is correctly reproduced for Antarctica with a maximum in winter. LMDZ-iso reproduces the spring maximum of tritium over Europe, but underestimates it and produces a peak in winter that is not apparent in the data. This implementation of tritium in a GCM promises to provide a better constraint on: (1) the intrusions and transport of air masses from the stratosphere, and (2) the dynamics of the modelled water cycle. The method complements the existing approach of using stable water isotopes.
•Natural tritium (HTO) has been implemented in the AGCM LMDZ-iso.•LMDZ-iso correctly captures the observed continental and latitudinal effects.•Best results with the lower range of Masarik and Beer production rate (−30%).•We reproduce the tritium winter peak in Antarctica due to stratospheric injections.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2015.06.043</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4620-4696</orcidid><orcidid>https://orcid.org/0000-0002-2554-9660</orcidid><orcidid>https://orcid.org/0000-0003-4950-3664</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-821X |
ispartof | Earth and planetary science letters, 2015-10, Vol.427, p.160-170 |
issn | 0012-821X 1385-013X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01806115v1 |
source | ScienceDirect Freedom Collection |
subjects | Air masses Atmospheric General Circulation Models Computer simulation Continental interfaces, environment GCM hydrological cycle Intrusion Isotopes Ocean, Atmosphere Precipitation Sciences of the Universe stratospheric air intrusions Tritium Winter |
title | The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20global%20distribution%20of%20natural%20tritium%20in%20precipitation%20simulated%20with%20an%20Atmospheric%20General%20Circulation%20Model%20and%20comparison%20with%20observations&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Cauquoin,%20A.&rft.date=2015-10-01&rft.volume=427&rft.spage=160&rft.epage=170&rft.pages=160-170&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2015.06.043&rft_dat=%3Cproquest_hal_p%3E1709169024%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709169024&rft_id=info:pmid/&rfr_iscdi=true |