Loading…

The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations

The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in...

Full description

Saved in:
Bibliographic Details
Published in:Earth and planetary science letters 2015-10, Vol.427, p.160-170
Main Authors: Cauquoin, A., Jean-Baptiste, P., Risi, C., Fourré, É., Stenni, B., Landais, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3
cites cdi_FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3
container_end_page 170
container_issue
container_start_page 160
container_title Earth and planetary science letters
container_volume 427
creator Cauquoin, A.
Jean-Baptiste, P.
Risi, C.
Fourré, É.
Stenni, B.
Landais, A.
description The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in water. These simulations were obtained using a version of the LMDZ General Circulation Model enhanced by water isotopes diagnostics, LMDZ-iso. To avoid tritium generated by nuclear bomb testing, the simulations have been evaluated against a compilation of published tritium datasets dating from before 1950, or measured recently. LMDZ-iso correctly captures the observed tritium enrichment in precipitation as oceanic air moves inland (the so-called continental effect) and the observed north–south variations due to the latitudinal dependency of the cosmogenic tritium production rate. The seasonal variability, linked to the stratospheric intrusions of air masses with higher tritium content into the troposphere, is correctly reproduced for Antarctica with a maximum in winter. LMDZ-iso reproduces the spring maximum of tritium over Europe, but underestimates it and produces a peak in winter that is not apparent in the data. This implementation of tritium in a GCM promises to provide a better constraint on: (1) the intrusions and transport of air masses from the stratosphere, and (2) the dynamics of the modelled water cycle. The method complements the existing approach of using stable water isotopes. •Natural tritium (HTO) has been implemented in the AGCM LMDZ-iso.•LMDZ-iso correctly captures the observed continental and latitudinal effects.•Best results with the lower range of Masarik and Beer production rate (−30%).•We reproduce the tritium winter peak in Antarctica due to stratospheric injections.
doi_str_mv 10.1016/j.epsl.2015.06.043
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01806115v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X15004069</els_id><sourcerecordid>1709169024</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhk1podskL5CTju3BrmSvtTb0sixtUtiSSwq5ibE07s4iW64kb8l79IEr75YcS0-Cn-8bRvNn2a3gheBCfjwWOAVblFzUBZcFX1evspWomjrnonp6na04F2XelOLpbfYuhCPnXNayXWW_Hw_IfljXgWWGQvTUzZHcyFzPRoizT3kKI80Do5FNHjVNFOHMBBpmCxEN-0XxwGBk2zi4MB3Qk2Z3OOKi78jrBVuMb86gTaBh2g0TeAopPMuuC-hPZypcZ296sAFv_r5X2fcvnx939_n-4e7rbrvPYV1WMe-h1r2BsuRd1_StqUyXfimFhLasAcCkpDUgdIsbQNNvZI-VMT10jdnIrquusg-XuQewavI0gH9WDkjdb_dqybhouBSiPonEvr-wk3c_ZwxRDRQ0WgsjujkosRFNW6_r6n9Q3grZ8nKd0PKCau9C8Ni_rCG4WppVR7U0q5ZmFZcqNZukTxcJ021OhF4FTThqNJTqico4-pf-B90tseE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709169024</pqid></control><display><type>article</type><title>The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations</title><source>ScienceDirect Freedom Collection</source><creator>Cauquoin, A. ; Jean-Baptiste, P. ; Risi, C. ; Fourré, É. ; Stenni, B. ; Landais, A.</creator><creatorcontrib>Cauquoin, A. ; Jean-Baptiste, P. ; Risi, C. ; Fourré, É. ; Stenni, B. ; Landais, A.</creatorcontrib><description>The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in water. These simulations were obtained using a version of the LMDZ General Circulation Model enhanced by water isotopes diagnostics, LMDZ-iso. To avoid tritium generated by nuclear bomb testing, the simulations have been evaluated against a compilation of published tritium datasets dating from before 1950, or measured recently. LMDZ-iso correctly captures the observed tritium enrichment in precipitation as oceanic air moves inland (the so-called continental effect) and the observed north–south variations due to the latitudinal dependency of the cosmogenic tritium production rate. The seasonal variability, linked to the stratospheric intrusions of air masses with higher tritium content into the troposphere, is correctly reproduced for Antarctica with a maximum in winter. LMDZ-iso reproduces the spring maximum of tritium over Europe, but underestimates it and produces a peak in winter that is not apparent in the data. This implementation of tritium in a GCM promises to provide a better constraint on: (1) the intrusions and transport of air masses from the stratosphere, and (2) the dynamics of the modelled water cycle. The method complements the existing approach of using stable water isotopes. •Natural tritium (HTO) has been implemented in the AGCM LMDZ-iso.•LMDZ-iso correctly captures the observed continental and latitudinal effects.•Best results with the lower range of Masarik and Beer production rate (−30%).•We reproduce the tritium winter peak in Antarctica due to stratospheric injections.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2015.06.043</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Air masses ; Atmospheric General Circulation Models ; Computer simulation ; Continental interfaces, environment ; GCM ; hydrological cycle ; Intrusion ; Isotopes ; Ocean, Atmosphere ; Precipitation ; Sciences of the Universe ; stratospheric air intrusions ; Tritium ; Winter</subject><ispartof>Earth and planetary science letters, 2015-10, Vol.427, p.160-170</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3</citedby><cites>FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3</cites><orcidid>0000-0002-4620-4696 ; 0000-0002-2554-9660 ; 0000-0003-4950-3664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01806115$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cauquoin, A.</creatorcontrib><creatorcontrib>Jean-Baptiste, P.</creatorcontrib><creatorcontrib>Risi, C.</creatorcontrib><creatorcontrib>Fourré, É.</creatorcontrib><creatorcontrib>Stenni, B.</creatorcontrib><creatorcontrib>Landais, A.</creatorcontrib><title>The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations</title><title>Earth and planetary science letters</title><description>The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in water. These simulations were obtained using a version of the LMDZ General Circulation Model enhanced by water isotopes diagnostics, LMDZ-iso. To avoid tritium generated by nuclear bomb testing, the simulations have been evaluated against a compilation of published tritium datasets dating from before 1950, or measured recently. LMDZ-iso correctly captures the observed tritium enrichment in precipitation as oceanic air moves inland (the so-called continental effect) and the observed north–south variations due to the latitudinal dependency of the cosmogenic tritium production rate. The seasonal variability, linked to the stratospheric intrusions of air masses with higher tritium content into the troposphere, is correctly reproduced for Antarctica with a maximum in winter. LMDZ-iso reproduces the spring maximum of tritium over Europe, but underestimates it and produces a peak in winter that is not apparent in the data. This implementation of tritium in a GCM promises to provide a better constraint on: (1) the intrusions and transport of air masses from the stratosphere, and (2) the dynamics of the modelled water cycle. The method complements the existing approach of using stable water isotopes. •Natural tritium (HTO) has been implemented in the AGCM LMDZ-iso.•LMDZ-iso correctly captures the observed continental and latitudinal effects.•Best results with the lower range of Masarik and Beer production rate (−30%).•We reproduce the tritium winter peak in Antarctica due to stratospheric injections.</description><subject>Air masses</subject><subject>Atmospheric General Circulation Models</subject><subject>Computer simulation</subject><subject>Continental interfaces, environment</subject><subject>GCM</subject><subject>hydrological cycle</subject><subject>Intrusion</subject><subject>Isotopes</subject><subject>Ocean, Atmosphere</subject><subject>Precipitation</subject><subject>Sciences of the Universe</subject><subject>stratospheric air intrusions</subject><subject>Tritium</subject><subject>Winter</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhk1podskL5CTju3BrmSvtTb0sixtUtiSSwq5ibE07s4iW64kb8l79IEr75YcS0-Cn-8bRvNn2a3gheBCfjwWOAVblFzUBZcFX1evspWomjrnonp6na04F2XelOLpbfYuhCPnXNayXWW_Hw_IfljXgWWGQvTUzZHcyFzPRoizT3kKI80Do5FNHjVNFOHMBBpmCxEN-0XxwGBk2zi4MB3Qk2Z3OOKi78jrBVuMb86gTaBh2g0TeAopPMuuC-hPZypcZ296sAFv_r5X2fcvnx939_n-4e7rbrvPYV1WMe-h1r2BsuRd1_StqUyXfimFhLasAcCkpDUgdIsbQNNvZI-VMT10jdnIrquusg-XuQewavI0gH9WDkjdb_dqybhouBSiPonEvr-wk3c_ZwxRDRQ0WgsjujkosRFNW6_r6n9Q3grZ8nKd0PKCau9C8Ni_rCG4WppVR7U0q5ZmFZcqNZukTxcJ021OhF4FTThqNJTqico4-pf-B90tseE</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Cauquoin, A.</creator><creator>Jean-Baptiste, P.</creator><creator>Risi, C.</creator><creator>Fourré, É.</creator><creator>Stenni, B.</creator><creator>Landais, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4620-4696</orcidid><orcidid>https://orcid.org/0000-0002-2554-9660</orcidid><orcidid>https://orcid.org/0000-0003-4950-3664</orcidid></search><sort><creationdate>20151001</creationdate><title>The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations</title><author>Cauquoin, A. ; Jean-Baptiste, P. ; Risi, C. ; Fourré, É. ; Stenni, B. ; Landais, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Air masses</topic><topic>Atmospheric General Circulation Models</topic><topic>Computer simulation</topic><topic>Continental interfaces, environment</topic><topic>GCM</topic><topic>hydrological cycle</topic><topic>Intrusion</topic><topic>Isotopes</topic><topic>Ocean, Atmosphere</topic><topic>Precipitation</topic><topic>Sciences of the Universe</topic><topic>stratospheric air intrusions</topic><topic>Tritium</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cauquoin, A.</creatorcontrib><creatorcontrib>Jean-Baptiste, P.</creatorcontrib><creatorcontrib>Risi, C.</creatorcontrib><creatorcontrib>Fourré, É.</creatorcontrib><creatorcontrib>Stenni, B.</creatorcontrib><creatorcontrib>Landais, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cauquoin, A.</au><au>Jean-Baptiste, P.</au><au>Risi, C.</au><au>Fourré, É.</au><au>Stenni, B.</au><au>Landais, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations</atitle><jtitle>Earth and planetary science letters</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>427</volume><spage>160</spage><epage>170</epage><pages>160-170</pages><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>The description of the hydrological cycle in Atmospheric General Circulation Models (GCMs) can be validated using water isotopes as tracers. Many GCMs now simulate the movement of the stable isotopes of water, but here we present the first GCM simulations modelling the content of natural tritium in water. These simulations were obtained using a version of the LMDZ General Circulation Model enhanced by water isotopes diagnostics, LMDZ-iso. To avoid tritium generated by nuclear bomb testing, the simulations have been evaluated against a compilation of published tritium datasets dating from before 1950, or measured recently. LMDZ-iso correctly captures the observed tritium enrichment in precipitation as oceanic air moves inland (the so-called continental effect) and the observed north–south variations due to the latitudinal dependency of the cosmogenic tritium production rate. The seasonal variability, linked to the stratospheric intrusions of air masses with higher tritium content into the troposphere, is correctly reproduced for Antarctica with a maximum in winter. LMDZ-iso reproduces the spring maximum of tritium over Europe, but underestimates it and produces a peak in winter that is not apparent in the data. This implementation of tritium in a GCM promises to provide a better constraint on: (1) the intrusions and transport of air masses from the stratosphere, and (2) the dynamics of the modelled water cycle. The method complements the existing approach of using stable water isotopes. •Natural tritium (HTO) has been implemented in the AGCM LMDZ-iso.•LMDZ-iso correctly captures the observed continental and latitudinal effects.•Best results with the lower range of Masarik and Beer production rate (−30%).•We reproduce the tritium winter peak in Antarctica due to stratospheric injections.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2015.06.043</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4620-4696</orcidid><orcidid>https://orcid.org/0000-0002-2554-9660</orcidid><orcidid>https://orcid.org/0000-0003-4950-3664</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0012-821X
ispartof Earth and planetary science letters, 2015-10, Vol.427, p.160-170
issn 0012-821X
1385-013X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01806115v1
source ScienceDirect Freedom Collection
subjects Air masses
Atmospheric General Circulation Models
Computer simulation
Continental interfaces, environment
GCM
hydrological cycle
Intrusion
Isotopes
Ocean, Atmosphere
Precipitation
Sciences of the Universe
stratospheric air intrusions
Tritium
Winter
title The global distribution of natural tritium in precipitation simulated with an Atmospheric General Circulation Model and comparison with observations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20global%20distribution%20of%20natural%20tritium%20in%20precipitation%20simulated%20with%20an%20Atmospheric%20General%20Circulation%20Model%20and%20comparison%20with%20observations&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Cauquoin,%20A.&rft.date=2015-10-01&rft.volume=427&rft.spage=160&rft.epage=170&rft.pages=160-170&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2015.06.043&rft_dat=%3Cproquest_hal_p%3E1709169024%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a423t-fa5cfda220bb8f9d3db012616a925aaadd3d9da1c9e7aedf76fe3ddfab8d76bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709169024&rft_id=info:pmid/&rfr_iscdi=true