Loading…

Synthesis and Shaping Scale-up Study of Functionalized UiO-66 MOF for Ammonia Air Purification Filters

We report herein the upscaled synthesis and shaping of UiO66-COOH for NH3 air purification. The synthesis of the zirconium-based MOF was carried out in a batch reactor in an aqueous suspension with a yield of 89% and a space-time yield of 350 kg/day/m3. Neither toxic chemicals nor organic solvents w...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2018-06, Vol.57 (24), p.8200-8208
Main Authors: Khabzina, Yoldes, Dhainaut, Jeremy, Ahlhelm, Matthias, Richter, Hans-Juergen, Reinsch, Helge, Stock, Norbert, Farrusseng, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report herein the upscaled synthesis and shaping of UiO66-COOH for NH3 air purification. The synthesis of the zirconium-based MOF was carried out in a batch reactor in an aqueous suspension with a yield of 89% and a space-time yield of 350 kg/day/m3. Neither toxic chemicals nor organic solvents were used, allowing this MOF to be employed in individual or collective air purification devices. Freeze-granulation and extrusion shaping techniques were investigated. The NH3 air purification performances of UiO66-COOH in bead, tablet and extrudate forms were compared to those of commercial carbon based materials (type K adsorbents from3M and Norit). Testing conditions were chosen to reflect current standards for ammonia concentration (600–1200 ppm) and velocity. In addition, the breakthrough measurements were carried out at three different relative humidity levels (0%, 40%, and 70%). Pellets and extrudates of UiO66-COOH outperformed commercial benchmark adsorbents in all conditions, especially in dry conditions, for which the commercial adsorbents suffered impaired ammonia uptake and shortened service life. Extrudates of UiO66-COOH also withstood attrition after intensive shaking.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.8b00808