Loading…
Synthesis and characterization of Cr-pillared clays: modelling using factorial design methodology
Cr-pillared interlayered clays (Cr-PILCs) have been prepared from natural calcium bentonite originating from a Romanian deposit and the effect of some parameters on the chemical and textural properties have been investigated. The crude bentonite and the derived materials were characterized by nitrog...
Saved in:
Published in: | Journal of porous materials 2015-08, Vol.22 (4), p.1009-1019 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cr-pillared interlayered clays (Cr-PILCs) have been prepared from natural calcium bentonite originating from a Romanian deposit and the effect of some parameters on the chemical and textural properties have been investigated. The crude bentonite and the derived materials were characterized by nitrogen adsorption–desorption technique, X-ray diffraction, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and transmission electron microscopy. The specific surface area values, the pore size distribution, morphological characteristics and the basal spacing of the Cr-PILCs are strongly affected by the process parameters. The influence of three relevant factors (metal/clay ratio, calcination temperature and calcination duration) on the specific surface areas of the Romanian Cr-PILCs was investigated using a 3
3
factorial design methodology. The optimum conditions to obtain Cr-PILCs with a specific surface area of 183 m
2
/g (more than four times higher than the raw material) were as follows: metal/clay ratio of 10 mmols/g, calcination temperature 300 °C and calcination duration 60 min. The model developed in this paper predicts very well the experimental results. Due to the high porosity and adsorption properties, the prepared Cr-PILCs have great potential in remediation of industrial liquid effluents. |
---|---|
ISSN: | 1380-2224 1573-4854 |
DOI: | 10.1007/s10934-015-9975-z |