Loading…

Thermoelectric performance of codoped (Bi, In)-GeTe and (Ag, In, Sb)-SnTe materials processed by Spark Plasma Sintering

[Display omitted] •Codoped (Bi, In)-GeTe and (Sb, In, Ag)-SnTe processed by Spark Plasma Sintering.•Bi, In codoping in GeTe enhances the thermopower and suppresses the thermal transport.•Ge0.93Bi0.05In0.02Te maintains zT ∼ 0.85 over a wide temperature range (550–773 K).•Sb, In codoping in SnTe enhan...

Full description

Saved in:
Bibliographic Details
Published in:Materials letters 2018-11, Vol.230, p.191-194
Main Authors: Srinivasan, Bhuvanesh, Boussard-Pledel, Catherine, Bureau, Bruno
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-d115319395ed057ca6c2bd1fafd987e39ff7cacde2479feb11f4a94cf22b7a83
cites cdi_FETCH-LOGICAL-c480t-d115319395ed057ca6c2bd1fafd987e39ff7cacde2479feb11f4a94cf22b7a83
container_end_page 194
container_issue
container_start_page 191
container_title Materials letters
container_volume 230
creator Srinivasan, Bhuvanesh
Boussard-Pledel, Catherine
Bureau, Bruno
description [Display omitted] •Codoped (Bi, In)-GeTe and (Sb, In, Ag)-SnTe processed by Spark Plasma Sintering.•Bi, In codoping in GeTe enhances the thermopower and suppresses the thermal transport.•Ge0.93Bi0.05In0.02Te maintains zT ∼ 0.85 over a wide temperature range (550–773 K).•Sb, In codoping in SnTe enhances the power factor and reduces the thermal transport.•Sn0.845Sb0.15In0.005Te exhibits an improved zT ∼ 0.8 at 823 K. GeTe and SnTe based materials are emerging as viable alternatives for toxic PbTe based thermoelectric materials. Here, a systematic study of thermoelectric properties of Bi and In codoped GeTe, and Sb, In and Ag codoped SnTe alloys processed by Spark Plasma Sintering are presented. We report that codoping of Bi and In to GeTe, (i) enhances the thermoelectric performance by the synergistic effect of nanostructuring, suppression of carrier density and creation of resonant level, which enables to simultaneously enhance the thermopower and reduce the thermal transport, and (ii) promotes the R3m → Fm-3m structural transition. These cumulative effects help Ge0.93Bi0.05In0.02Te to maintain the peak figure of merit, zT ∼ 0.85 over a wide spectrum of temperature from 550 to 773 K, making them a serious candidate for device fabrications. We also report that Sb and In codoping in SnTe enhances the thermoelectric performance, as Sn0.845Sb0.15In0.005Te exhibits an improved zT ∼ 0.8 at 823 K, when compared to pristine SnTe.
doi_str_mv 10.1016/j.matlet.2018.07.132
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01874723v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167577X18311686</els_id><sourcerecordid>2114214197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-d115319395ed057ca6c2bd1fafd987e39ff7cacde2479feb11f4a94cf22b7a83</originalsourceid><addsrcrecordid>eNp9kc9L5DAcxcOi4Kj7H3gI7MUB203SjGkuC6P4CwYUZg57C2nyjWZsm25SXfzvTanscU-Bx-c9Xr4PoTNKSkro5c992emxhbFkhNYlESWt2De0oLWoCi6FPECLjIliJcTvI3Sc0p4QwiXhC_R39wKxC9CCGaM3eIDoQux0bwAHh02wYQCLz6_8BX7ol8Ud7ADrPivr50m5wNtmWWz7rOYOEL1uEx5iMJBS9jUfeDvo-IqfWp06jbe-n6D--RQduozC96_3BO1ub3bX98Xm8e7her0pDK_JWFhKVxWVlVyBJSth9KVhjaVOOytrAZV0LovGAuNCOmgodVxLbhxjjdB1dYKWc-yLbtUQfafjhwraq_v1Rk1aPpjgglXvLLM_ZjbX__MGaVT78Bb73E4xSjmjnEqRKT5TJoaUIrh_sZSoaQ21V_MaalpDEaHyGtn2a7ZB_uy7h6iS8ZCvbH3Mp1c2-P8HfALAEJPl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114214197</pqid></control><display><type>article</type><title>Thermoelectric performance of codoped (Bi, In)-GeTe and (Ag, In, Sb)-SnTe materials processed by Spark Plasma Sintering</title><source>ScienceDirect Journals</source><creator>Srinivasan, Bhuvanesh ; Boussard-Pledel, Catherine ; Bureau, Bruno</creator><creatorcontrib>Srinivasan, Bhuvanesh ; Boussard-Pledel, Catherine ; Bureau, Bruno</creatorcontrib><description>[Display omitted] •Codoped (Bi, In)-GeTe and (Sb, In, Ag)-SnTe processed by Spark Plasma Sintering.•Bi, In codoping in GeTe enhances the thermopower and suppresses the thermal transport.•Ge0.93Bi0.05In0.02Te maintains zT ∼ 0.85 over a wide temperature range (550–773 K).•Sb, In codoping in SnTe enhances the power factor and reduces the thermal transport.•Sn0.845Sb0.15In0.005Te exhibits an improved zT ∼ 0.8 at 823 K. GeTe and SnTe based materials are emerging as viable alternatives for toxic PbTe based thermoelectric materials. Here, a systematic study of thermoelectric properties of Bi and In codoped GeTe, and Sb, In and Ag codoped SnTe alloys processed by Spark Plasma Sintering are presented. We report that codoping of Bi and In to GeTe, (i) enhances the thermoelectric performance by the synergistic effect of nanostructuring, suppression of carrier density and creation of resonant level, which enables to simultaneously enhance the thermopower and reduce the thermal transport, and (ii) promotes the R3m → Fm-3m structural transition. These cumulative effects help Ge0.93Bi0.05In0.02Te to maintain the peak figure of merit, zT ∼ 0.85 over a wide spectrum of temperature from 550 to 773 K, making them a serious candidate for device fabrications. We also report that Sb and In codoping in SnTe enhances the thermoelectric performance, as Sn0.845Sb0.15In0.005Te exhibits an improved zT ∼ 0.8 at 823 K, when compared to pristine SnTe.</description><identifier>ISSN: 0167-577X</identifier><identifier>EISSN: 1873-4979</identifier><identifier>DOI: 10.1016/j.matlet.2018.07.132</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antimony ; Bismuth ; Carrier density ; Chemical Sciences ; Codoped GeTe and SnTe ; Electricity ; Figure of merit ; Heat conductivity ; Improved power factor ; Intermetallic compounds ; Material chemistry ; Materials science ; Plasma sintering ; Reduced thermal conductivity ; Spark plasma sintering ; Structural transition ; Synergistic effect ; Temperature ; Thermoelectric materials ; Thermoelectrics ; Tin tellurides</subject><ispartof>Materials letters, 2018-11, Vol.230, p.191-194</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 1, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-d115319395ed057ca6c2bd1fafd987e39ff7cacde2479feb11f4a94cf22b7a83</citedby><cites>FETCH-LOGICAL-c480t-d115319395ed057ca6c2bd1fafd987e39ff7cacde2479feb11f4a94cf22b7a83</cites><orcidid>0000-0002-4472-2780 ; 0000-0001-6303-648X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://univ-rennes.hal.science/hal-01874723$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Srinivasan, Bhuvanesh</creatorcontrib><creatorcontrib>Boussard-Pledel, Catherine</creatorcontrib><creatorcontrib>Bureau, Bruno</creatorcontrib><title>Thermoelectric performance of codoped (Bi, In)-GeTe and (Ag, In, Sb)-SnTe materials processed by Spark Plasma Sintering</title><title>Materials letters</title><description>[Display omitted] •Codoped (Bi, In)-GeTe and (Sb, In, Ag)-SnTe processed by Spark Plasma Sintering.•Bi, In codoping in GeTe enhances the thermopower and suppresses the thermal transport.•Ge0.93Bi0.05In0.02Te maintains zT ∼ 0.85 over a wide temperature range (550–773 K).•Sb, In codoping in SnTe enhances the power factor and reduces the thermal transport.•Sn0.845Sb0.15In0.005Te exhibits an improved zT ∼ 0.8 at 823 K. GeTe and SnTe based materials are emerging as viable alternatives for toxic PbTe based thermoelectric materials. Here, a systematic study of thermoelectric properties of Bi and In codoped GeTe, and Sb, In and Ag codoped SnTe alloys processed by Spark Plasma Sintering are presented. We report that codoping of Bi and In to GeTe, (i) enhances the thermoelectric performance by the synergistic effect of nanostructuring, suppression of carrier density and creation of resonant level, which enables to simultaneously enhance the thermopower and reduce the thermal transport, and (ii) promotes the R3m → Fm-3m structural transition. These cumulative effects help Ge0.93Bi0.05In0.02Te to maintain the peak figure of merit, zT ∼ 0.85 over a wide spectrum of temperature from 550 to 773 K, making them a serious candidate for device fabrications. We also report that Sb and In codoping in SnTe enhances the thermoelectric performance, as Sn0.845Sb0.15In0.005Te exhibits an improved zT ∼ 0.8 at 823 K, when compared to pristine SnTe.</description><subject>Antimony</subject><subject>Bismuth</subject><subject>Carrier density</subject><subject>Chemical Sciences</subject><subject>Codoped GeTe and SnTe</subject><subject>Electricity</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Improved power factor</subject><subject>Intermetallic compounds</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>Plasma sintering</subject><subject>Reduced thermal conductivity</subject><subject>Spark plasma sintering</subject><subject>Structural transition</subject><subject>Synergistic effect</subject><subject>Temperature</subject><subject>Thermoelectric materials</subject><subject>Thermoelectrics</subject><subject>Tin tellurides</subject><issn>0167-577X</issn><issn>1873-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc9L5DAcxcOi4Kj7H3gI7MUB203SjGkuC6P4CwYUZg57C2nyjWZsm25SXfzvTanscU-Bx-c9Xr4PoTNKSkro5c992emxhbFkhNYlESWt2De0oLWoCi6FPECLjIliJcTvI3Sc0p4QwiXhC_R39wKxC9CCGaM3eIDoQux0bwAHh02wYQCLz6_8BX7ol8Ud7ADrPivr50m5wNtmWWz7rOYOEL1uEx5iMJBS9jUfeDvo-IqfWp06jbe-n6D--RQduozC96_3BO1ub3bX98Xm8e7her0pDK_JWFhKVxWVlVyBJSth9KVhjaVOOytrAZV0LovGAuNCOmgodVxLbhxjjdB1dYKWc-yLbtUQfafjhwraq_v1Rk1aPpjgglXvLLM_ZjbX__MGaVT78Bb73E4xSjmjnEqRKT5TJoaUIrh_sZSoaQ21V_MaalpDEaHyGtn2a7ZB_uy7h6iS8ZCvbH3Mp1c2-P8HfALAEJPl</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Srinivasan, Bhuvanesh</creator><creator>Boussard-Pledel, Catherine</creator><creator>Bureau, Bruno</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4472-2780</orcidid><orcidid>https://orcid.org/0000-0001-6303-648X</orcidid></search><sort><creationdate>20181101</creationdate><title>Thermoelectric performance of codoped (Bi, In)-GeTe and (Ag, In, Sb)-SnTe materials processed by Spark Plasma Sintering</title><author>Srinivasan, Bhuvanesh ; Boussard-Pledel, Catherine ; Bureau, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-d115319395ed057ca6c2bd1fafd987e39ff7cacde2479feb11f4a94cf22b7a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antimony</topic><topic>Bismuth</topic><topic>Carrier density</topic><topic>Chemical Sciences</topic><topic>Codoped GeTe and SnTe</topic><topic>Electricity</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Improved power factor</topic><topic>Intermetallic compounds</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>Plasma sintering</topic><topic>Reduced thermal conductivity</topic><topic>Spark plasma sintering</topic><topic>Structural transition</topic><topic>Synergistic effect</topic><topic>Temperature</topic><topic>Thermoelectric materials</topic><topic>Thermoelectrics</topic><topic>Tin tellurides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srinivasan, Bhuvanesh</creatorcontrib><creatorcontrib>Boussard-Pledel, Catherine</creatorcontrib><creatorcontrib>Bureau, Bruno</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivasan, Bhuvanesh</au><au>Boussard-Pledel, Catherine</au><au>Bureau, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric performance of codoped (Bi, In)-GeTe and (Ag, In, Sb)-SnTe materials processed by Spark Plasma Sintering</atitle><jtitle>Materials letters</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>230</volume><spage>191</spage><epage>194</epage><pages>191-194</pages><issn>0167-577X</issn><eissn>1873-4979</eissn><abstract>[Display omitted] •Codoped (Bi, In)-GeTe and (Sb, In, Ag)-SnTe processed by Spark Plasma Sintering.•Bi, In codoping in GeTe enhances the thermopower and suppresses the thermal transport.•Ge0.93Bi0.05In0.02Te maintains zT ∼ 0.85 over a wide temperature range (550–773 K).•Sb, In codoping in SnTe enhances the power factor and reduces the thermal transport.•Sn0.845Sb0.15In0.005Te exhibits an improved zT ∼ 0.8 at 823 K. GeTe and SnTe based materials are emerging as viable alternatives for toxic PbTe based thermoelectric materials. Here, a systematic study of thermoelectric properties of Bi and In codoped GeTe, and Sb, In and Ag codoped SnTe alloys processed by Spark Plasma Sintering are presented. We report that codoping of Bi and In to GeTe, (i) enhances the thermoelectric performance by the synergistic effect of nanostructuring, suppression of carrier density and creation of resonant level, which enables to simultaneously enhance the thermopower and reduce the thermal transport, and (ii) promotes the R3m → Fm-3m structural transition. These cumulative effects help Ge0.93Bi0.05In0.02Te to maintain the peak figure of merit, zT ∼ 0.85 over a wide spectrum of temperature from 550 to 773 K, making them a serious candidate for device fabrications. We also report that Sb and In codoping in SnTe enhances the thermoelectric performance, as Sn0.845Sb0.15In0.005Te exhibits an improved zT ∼ 0.8 at 823 K, when compared to pristine SnTe.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matlet.2018.07.132</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4472-2780</orcidid><orcidid>https://orcid.org/0000-0001-6303-648X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-577X
ispartof Materials letters, 2018-11, Vol.230, p.191-194
issn 0167-577X
1873-4979
language eng
recordid cdi_hal_primary_oai_HAL_hal_01874723v2
source ScienceDirect Journals
subjects Antimony
Bismuth
Carrier density
Chemical Sciences
Codoped GeTe and SnTe
Electricity
Figure of merit
Heat conductivity
Improved power factor
Intermetallic compounds
Material chemistry
Materials science
Plasma sintering
Reduced thermal conductivity
Spark plasma sintering
Structural transition
Synergistic effect
Temperature
Thermoelectric materials
Thermoelectrics
Tin tellurides
title Thermoelectric performance of codoped (Bi, In)-GeTe and (Ag, In, Sb)-SnTe materials processed by Spark Plasma Sintering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20performance%20of%20codoped%20(Bi,%20In)-GeTe%20and%20(Ag,%20In,%20Sb)-SnTe%20materials%20processed%20by%20Spark%20Plasma%20Sintering&rft.jtitle=Materials%20letters&rft.au=Srinivasan,%20Bhuvanesh&rft.date=2018-11-01&rft.volume=230&rft.spage=191&rft.epage=194&rft.pages=191-194&rft.issn=0167-577X&rft.eissn=1873-4979&rft_id=info:doi/10.1016/j.matlet.2018.07.132&rft_dat=%3Cproquest_hal_p%3E2114214197%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-d115319395ed057ca6c2bd1fafd987e39ff7cacde2479feb11f4a94cf22b7a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2114214197&rft_id=info:pmid/&rfr_iscdi=true