Loading…
Metallic aluminum in MSWI fly ash: quantification and influence on the properties of cement-based products
This article focuses on the effects of metallic aluminum contained in municipal solid waste incineration (MSWI) fly ashes on cement-based materials in which they are added. The ash under study was treated by an industrial physicochemical process of neutralization. The paper also presents a method to...
Saved in:
Published in: | Waste management (Elmsford) 2004, Vol.24 (6), p.589-596 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article focuses on the effects of metallic aluminum contained in municipal solid waste incineration (MSWI) fly ashes on cement-based materials in which they are added. The ash under study was treated by an industrial physicochemical process of neutralization. The paper also presents a method to quantify the metallic aluminum content of ash: it consists in measuring the amount of hydrogen gas produced by the oxidation reaction of metallic aluminum. This method is simple and fast. Results show that studied ash contains an appreciable amount of metallic aluminum. Investigations were carried out to study the incorporation of the ash in concrete: in this case, the presence of metallic aluminum is worrying because it could be responsible for disorders in concrete. In fact, swellings are observed on cement pastes and mortars containing ash during the first 24 h of hydration. A test based on hydrostatic weighing permits to quantify the swelling of fresh cement paste and to study the evolution of this swelling. Causes of swelling are analyzed. Results show that ettringite formation occurs after the end of the expansion reaction. So it can be concluded that metallic aluminum is the sole responsible for the observed swelling. Consequences of swelling are also analyzed by measuring compressive strength of ash-containing mortars: this swelling leads to cracks in the mortars and significant decrease of their compressive strength. |
---|---|
ISSN: | 0956-053X 1879-2456 |
DOI: | 10.1016/j.wasman.2004.01.005 |