Loading…
Intertwining wavelets or multiresolution analysis on graphs through random forests
We propose a new method for performing multiscale analysis of functions defined on the vertices of a finite connected weighted graph. Our approach relies on a random spanning forest to downsample the set of vertices, and on approximate solutions of Markov intertwining relation to provide a subgraph...
Saved in:
Published in: | Applied and computational harmonic analysis 2020-05, Vol.48 (3), p.949-992 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a new method for performing multiscale analysis of functions defined on the vertices of a finite connected weighted graph. Our approach relies on a random spanning forest to downsample the set of vertices, and on approximate solutions of Markov intertwining relation to provide a subgraph structure and a filter bank leading to a wavelet basis of the set of functions. Our construction involves two parameters q and q′. The first one controls the mean number of kept vertices in the downsampling, while the second one is a tuning parameter between space localization and frequency localization. We provide an explicit reconstruction formula, bounds on the reconstruction operator norm and on the error in the intertwining relation, and a Jackson-like inequality. These bounds lead to recommend a way to choose the parameters q and q′. We illustrate the method by numerical experiments. |
---|---|
ISSN: | 1063-5203 1096-603X |
DOI: | 10.1016/j.acha.2018.09.006 |