Loading…

Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries

► Liquid electrolyte composition for lithium/sulfur secondary batteries. ► Carbonate-based electrolytes prove not to be compatible with the sulfur electrode. ► Poor electrochemical performances related to low polysulfide solubility. ► Increase in the discharge capacity using ether solvents with high...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2013-02, Vol.89, p.737-743
Main Authors: Barchasz, Céline, Leprêtre, Jean-Claude, Patoux, Sébastien, Alloin, Fannie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:► Liquid electrolyte composition for lithium/sulfur secondary batteries. ► Carbonate-based electrolytes prove not to be compatible with the sulfur electrode. ► Poor electrochemical performances related to low polysulfide solubility. ► Increase in the discharge capacity using ether solvents with high solvating ability such as PEGDME. ► Evidence of DIOX polymerization during cycling. The lithium/sulfur (Li/S) battery is a promising electrochemical system that has a high theoretical capacity of 1675mAhg−1. However, the system suffers from several drawbacks: poor active material conductivity, active material dissolution, and use of the highly reactive lithium metal electrode. In this study, we investigated the electrolyte effects on electrochemical performances of the Li/S cell, by acting on the solvent composition. As conventional carbonate-based electrolytes turned out to be unusable in Li/S cells, alternative ether solvents had to be considered. Different kinds of solvent structures were investigated by changing the ether/alkyl moieties ratio to vary the lithium polysulfide solubility. This allowed to point out the importance of the solvent solvation ability on the discharge capacity. As the end of discharge is linked to the positive electrode passivation, an electrolyte having high solvation ability reduces the polysulfide precipitation and delays the positive electrode passivation.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2012.11.001