Loading…

The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses

[Display omitted] Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been chara...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2018-08, Vol.76, p.333-343
Main Authors: Gómez-Cerezo, N., Verron, E., Montouillout, V., Fayon, F., Lagadec, P., Bouler, J.M., Bujoli, B., Arcos, D., Vallet-Regí, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3
cites cdi_FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3
container_end_page 343
container_issue
container_start_page 333
container_title Acta biomaterialia
container_volume 76
creator Gómez-Cerezo, N.
Verron, E.
Montouillout, V.
Fayon, F.
Lagadec, P.
Bouler, J.M.
Bujoli, B.
Arcos, D.
Vallet-Regí, M.
description [Display omitted] Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been characterized using 29Si, 71Ga and 31P NMR analysis, demonstrating that Ga(III) is efficiently incorporated as both, network former (GaO4 units) and network modifier (GaO6 units). In vitro bioactivity tests evidenced that Ga-containing MBGs retain their capability for nucleation and growth of an apatite-like layer in contact with a simulated body fluid with ion concentrations nearly equal to those of human blood plasma. Finally, in vitro cell culture tests evidenced that Ga incorporation results in a selective effect on osteoblasts and osteoclasts. Indeed, the presence of this element enhances the early differentiation towards osteoblast phenotype while disturbing osteoclastogenesis. Considering these results, Ga-doped MBGs might be proposed as bone substitutes, especially in osteoporosis scenarios. Osteoporosis is the most prevalent bone disease affecting millions of patients every year. However, there is a lack of bone grafts specifically designed for the treatment of bone defects occurred because of osteoporotic fractures. The consequence is that osteoporotic bone defects are commonly treated with the same biomaterials intended for high quality bone tissue. In this work we have prepared mesoporous bioactive glasses doped with gallium, demonstrating osteoinductive capability by promoting the differentiation of pre-osteoblast toward osteoblasts and partial inhibition of osteoclastogenesis. Through a deep study of the local environment of gallium within the mesoporous matrix, this work shows that gallium release is not required to produce this effect on osteoblasts and osteoclasts. In this sense, the presence of this element at the surface of the mesoporous bioactive glasses would be enough to locally promote bone formation while reducing bone resorption.
doi_str_mv 10.1016/j.actbio.2018.06.036
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01898580v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706118303829</els_id><sourcerecordid>2063709380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0Eou3AP0DIEhu6SPAj8WODVFVAkUZiU9aW7dxMPUriYCcj9d_jIaULFqzsa33n-tx7EHpHSU0JFZ-OtfWLC7FmhKqaiJpw8QJdUiVVJVuhXpa7bFgliaAX6CrnIyFcUaZeowumtRCyVZfI3T8ATpDnOGXAscdzgirmBaIbbF4ytlOH_9R-q5eID3YYwjpiH6fFhilMBzxCjnNMcc24WCrGwgnwoSgy5DfoVW-HDG-fzh36-fXL_e1dtf_x7fvtzb7yjSRL5RjIFrxzjdKKKM1pw3rrNfeiYbJRzlLCuHUEWs6pE77jlsleWC0aK5njO3S99X2wg5lTGG16NNEGc3ezN-e3sietWkVOtLAfN3ZO8dcKeTFjyB6GwU5QhjCMCC6J5ooU9MM_6DGuaSqTGEaLR0Z0MbtDzUb5FHNO0D87oMSc8zJHs-VlznkZIkzJq8jePzVf3Qjds-hvQAX4vAFQNncKkEz2ASYPXUjgF9PF8P8ffgORsKhI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114220989</pqid></control><display><type>article</type><title>The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses</title><source>ScienceDirect Journals</source><creator>Gómez-Cerezo, N. ; Verron, E. ; Montouillout, V. ; Fayon, F. ; Lagadec, P. ; Bouler, J.M. ; Bujoli, B. ; Arcos, D. ; Vallet-Regí, M.</creator><creatorcontrib>Gómez-Cerezo, N. ; Verron, E. ; Montouillout, V. ; Fayon, F. ; Lagadec, P. ; Bouler, J.M. ; Bujoli, B. ; Arcos, D. ; Vallet-Regí, M.</creatorcontrib><description>[Display omitted] Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been characterized using 29Si, 71Ga and 31P NMR analysis, demonstrating that Ga(III) is efficiently incorporated as both, network former (GaO4 units) and network modifier (GaO6 units). In vitro bioactivity tests evidenced that Ga-containing MBGs retain their capability for nucleation and growth of an apatite-like layer in contact with a simulated body fluid with ion concentrations nearly equal to those of human blood plasma. Finally, in vitro cell culture tests evidenced that Ga incorporation results in a selective effect on osteoblasts and osteoclasts. Indeed, the presence of this element enhances the early differentiation towards osteoblast phenotype while disturbing osteoclastogenesis. Considering these results, Ga-doped MBGs might be proposed as bone substitutes, especially in osteoporosis scenarios. Osteoporosis is the most prevalent bone disease affecting millions of patients every year. However, there is a lack of bone grafts specifically designed for the treatment of bone defects occurred because of osteoporotic fractures. The consequence is that osteoporotic bone defects are commonly treated with the same biomaterials intended for high quality bone tissue. In this work we have prepared mesoporous bioactive glasses doped with gallium, demonstrating osteoinductive capability by promoting the differentiation of pre-osteoblast toward osteoblasts and partial inhibition of osteoclastogenesis. Through a deep study of the local environment of gallium within the mesoporous matrix, this work shows that gallium release is not required to produce this effect on osteoblasts and osteoclasts. In this sense, the presence of this element at the surface of the mesoporous bioactive glasses would be enough to locally promote bone formation while reducing bone resorption.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2018.06.036</identifier><identifier>PMID: 29966758</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Apatite ; Biocompatibility ; Bioglass ; Biological activity ; Biomaterials ; Biomedical materials ; Blood plasma ; Body fluids ; Bone biomaterials ; Bone grafts ; Bone growth ; Bone resorption ; Cations ; Cell culture ; Chemical Sciences ; Defects ; Differentiation ; Evaporation ; Fractures ; Gallium ; Gallium oxides ; Genotype &amp; phenotype ; Grafts ; In vitro methods and tests ; Material chemistry ; Mesoporous bioactive glasses ; NMR ; Nuclear magnetic resonance ; Osteoblast ; Osteoblastogenesis ; Osteoblasts ; Osteoclast ; Osteoclastogenesis ; Osteoclasts ; Osteogenesis ; Osteoporosis ; Phenotypes ; Phosphorus pentoxide ; Self-assembly ; Silicon dioxide ; Substitute bone ; Surgical implants</subject><ispartof>Acta biomaterialia, 2018-08, Vol.76, p.333-343</ispartof><rights>2018 Acta Materialia Inc.</rights><rights>Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Aug 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3</citedby><cites>FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3</cites><orcidid>0000-0001-9784-5584 ; 0000-0001-5086-5625 ; 0000-0002-8629-0170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29966758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01898580$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez-Cerezo, N.</creatorcontrib><creatorcontrib>Verron, E.</creatorcontrib><creatorcontrib>Montouillout, V.</creatorcontrib><creatorcontrib>Fayon, F.</creatorcontrib><creatorcontrib>Lagadec, P.</creatorcontrib><creatorcontrib>Bouler, J.M.</creatorcontrib><creatorcontrib>Bujoli, B.</creatorcontrib><creatorcontrib>Arcos, D.</creatorcontrib><creatorcontrib>Vallet-Regí, M.</creatorcontrib><title>The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted] Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been characterized using 29Si, 71Ga and 31P NMR analysis, demonstrating that Ga(III) is efficiently incorporated as both, network former (GaO4 units) and network modifier (GaO6 units). In vitro bioactivity tests evidenced that Ga-containing MBGs retain their capability for nucleation and growth of an apatite-like layer in contact with a simulated body fluid with ion concentrations nearly equal to those of human blood plasma. Finally, in vitro cell culture tests evidenced that Ga incorporation results in a selective effect on osteoblasts and osteoclasts. Indeed, the presence of this element enhances the early differentiation towards osteoblast phenotype while disturbing osteoclastogenesis. Considering these results, Ga-doped MBGs might be proposed as bone substitutes, especially in osteoporosis scenarios. Osteoporosis is the most prevalent bone disease affecting millions of patients every year. However, there is a lack of bone grafts specifically designed for the treatment of bone defects occurred because of osteoporotic fractures. The consequence is that osteoporotic bone defects are commonly treated with the same biomaterials intended for high quality bone tissue. In this work we have prepared mesoporous bioactive glasses doped with gallium, demonstrating osteoinductive capability by promoting the differentiation of pre-osteoblast toward osteoblasts and partial inhibition of osteoclastogenesis. Through a deep study of the local environment of gallium within the mesoporous matrix, this work shows that gallium release is not required to produce this effect on osteoblasts and osteoclasts. In this sense, the presence of this element at the surface of the mesoporous bioactive glasses would be enough to locally promote bone formation while reducing bone resorption.</description><subject>Apatite</subject><subject>Biocompatibility</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Blood plasma</subject><subject>Body fluids</subject><subject>Bone biomaterials</subject><subject>Bone grafts</subject><subject>Bone growth</subject><subject>Bone resorption</subject><subject>Cations</subject><subject>Cell culture</subject><subject>Chemical Sciences</subject><subject>Defects</subject><subject>Differentiation</subject><subject>Evaporation</subject><subject>Fractures</subject><subject>Gallium</subject><subject>Gallium oxides</subject><subject>Genotype &amp; phenotype</subject><subject>Grafts</subject><subject>In vitro methods and tests</subject><subject>Material chemistry</subject><subject>Mesoporous bioactive glasses</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Osteoblast</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoclast</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteogenesis</subject><subject>Osteoporosis</subject><subject>Phenotypes</subject><subject>Phosphorus pentoxide</subject><subject>Self-assembly</subject><subject>Silicon dioxide</subject><subject>Substitute bone</subject><subject>Surgical implants</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0Eou3AP0DIEhu6SPAj8WODVFVAkUZiU9aW7dxMPUriYCcj9d_jIaULFqzsa33n-tx7EHpHSU0JFZ-OtfWLC7FmhKqaiJpw8QJdUiVVJVuhXpa7bFgliaAX6CrnIyFcUaZeowumtRCyVZfI3T8ATpDnOGXAscdzgirmBaIbbF4ytlOH_9R-q5eID3YYwjpiH6fFhilMBzxCjnNMcc24WCrGwgnwoSgy5DfoVW-HDG-fzh36-fXL_e1dtf_x7fvtzb7yjSRL5RjIFrxzjdKKKM1pw3rrNfeiYbJRzlLCuHUEWs6pE77jlsleWC0aK5njO3S99X2wg5lTGG16NNEGc3ezN-e3sietWkVOtLAfN3ZO8dcKeTFjyB6GwU5QhjCMCC6J5ooU9MM_6DGuaSqTGEaLR0Z0MbtDzUb5FHNO0D87oMSc8zJHs-VlznkZIkzJq8jePzVf3Qjds-hvQAX4vAFQNncKkEz2ASYPXUjgF9PF8P8ffgORsKhI</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Gómez-Cerezo, N.</creator><creator>Verron, E.</creator><creator>Montouillout, V.</creator><creator>Fayon, F.</creator><creator>Lagadec, P.</creator><creator>Bouler, J.M.</creator><creator>Bujoli, B.</creator><creator>Arcos, D.</creator><creator>Vallet-Regí, M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9784-5584</orcidid><orcidid>https://orcid.org/0000-0001-5086-5625</orcidid><orcidid>https://orcid.org/0000-0002-8629-0170</orcidid></search><sort><creationdate>201808</creationdate><title>The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses</title><author>Gómez-Cerezo, N. ; Verron, E. ; Montouillout, V. ; Fayon, F. ; Lagadec, P. ; Bouler, J.M. ; Bujoli, B. ; Arcos, D. ; Vallet-Regí, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apatite</topic><topic>Biocompatibility</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Blood plasma</topic><topic>Body fluids</topic><topic>Bone biomaterials</topic><topic>Bone grafts</topic><topic>Bone growth</topic><topic>Bone resorption</topic><topic>Cations</topic><topic>Cell culture</topic><topic>Chemical Sciences</topic><topic>Defects</topic><topic>Differentiation</topic><topic>Evaporation</topic><topic>Fractures</topic><topic>Gallium</topic><topic>Gallium oxides</topic><topic>Genotype &amp; phenotype</topic><topic>Grafts</topic><topic>In vitro methods and tests</topic><topic>Material chemistry</topic><topic>Mesoporous bioactive glasses</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Osteoblast</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoclast</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteogenesis</topic><topic>Osteoporosis</topic><topic>Phenotypes</topic><topic>Phosphorus pentoxide</topic><topic>Self-assembly</topic><topic>Silicon dioxide</topic><topic>Substitute bone</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Cerezo, N.</creatorcontrib><creatorcontrib>Verron, E.</creatorcontrib><creatorcontrib>Montouillout, V.</creatorcontrib><creatorcontrib>Fayon, F.</creatorcontrib><creatorcontrib>Lagadec, P.</creatorcontrib><creatorcontrib>Bouler, J.M.</creatorcontrib><creatorcontrib>Bujoli, B.</creatorcontrib><creatorcontrib>Arcos, D.</creatorcontrib><creatorcontrib>Vallet-Regí, M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Cerezo, N.</au><au>Verron, E.</au><au>Montouillout, V.</au><au>Fayon, F.</au><au>Lagadec, P.</au><au>Bouler, J.M.</au><au>Bujoli, B.</au><au>Arcos, D.</au><au>Vallet-Regí, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2018-08</date><risdate>2018</risdate><volume>76</volume><spage>333</spage><epage>343</epage><pages>333-343</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted] Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been characterized using 29Si, 71Ga and 31P NMR analysis, demonstrating that Ga(III) is efficiently incorporated as both, network former (GaO4 units) and network modifier (GaO6 units). In vitro bioactivity tests evidenced that Ga-containing MBGs retain their capability for nucleation and growth of an apatite-like layer in contact with a simulated body fluid with ion concentrations nearly equal to those of human blood plasma. Finally, in vitro cell culture tests evidenced that Ga incorporation results in a selective effect on osteoblasts and osteoclasts. Indeed, the presence of this element enhances the early differentiation towards osteoblast phenotype while disturbing osteoclastogenesis. Considering these results, Ga-doped MBGs might be proposed as bone substitutes, especially in osteoporosis scenarios. Osteoporosis is the most prevalent bone disease affecting millions of patients every year. However, there is a lack of bone grafts specifically designed for the treatment of bone defects occurred because of osteoporotic fractures. The consequence is that osteoporotic bone defects are commonly treated with the same biomaterials intended for high quality bone tissue. In this work we have prepared mesoporous bioactive glasses doped with gallium, demonstrating osteoinductive capability by promoting the differentiation of pre-osteoblast toward osteoblasts and partial inhibition of osteoclastogenesis. Through a deep study of the local environment of gallium within the mesoporous matrix, this work shows that gallium release is not required to produce this effect on osteoblasts and osteoclasts. In this sense, the presence of this element at the surface of the mesoporous bioactive glasses would be enough to locally promote bone formation while reducing bone resorption.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29966758</pmid><doi>10.1016/j.actbio.2018.06.036</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9784-5584</orcidid><orcidid>https://orcid.org/0000-0001-5086-5625</orcidid><orcidid>https://orcid.org/0000-0002-8629-0170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2018-08, Vol.76, p.333-343
issn 1742-7061
1878-7568
language eng
recordid cdi_hal_primary_oai_HAL_hal_01898580v1
source ScienceDirect Journals
subjects Apatite
Biocompatibility
Bioglass
Biological activity
Biomaterials
Biomedical materials
Blood plasma
Body fluids
Bone biomaterials
Bone grafts
Bone growth
Bone resorption
Cations
Cell culture
Chemical Sciences
Defects
Differentiation
Evaporation
Fractures
Gallium
Gallium oxides
Genotype & phenotype
Grafts
In vitro methods and tests
Material chemistry
Mesoporous bioactive glasses
NMR
Nuclear magnetic resonance
Osteoblast
Osteoblastogenesis
Osteoblasts
Osteoclast
Osteoclastogenesis
Osteoclasts
Osteogenesis
Osteoporosis
Phenotypes
Phosphorus pentoxide
Self-assembly
Silicon dioxide
Substitute bone
Surgical implants
title The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20response%20of%20pre-osteoblasts%20and%20osteoclasts%20to%20gallium%20containing%20mesoporous%20bioactive%20glasses&rft.jtitle=Acta%20biomaterialia&rft.au=G%C3%B3mez-Cerezo,%20N.&rft.date=2018-08&rft.volume=76&rft.spage=333&rft.epage=343&rft.pages=333-343&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2018.06.036&rft_dat=%3Cproquest_hal_p%3E2063709380%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2114220989&rft_id=info:pmid/29966758&rfr_iscdi=true