Loading…
The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses
[Display omitted] Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been chara...
Saved in:
Published in: | Acta biomaterialia 2018-08, Vol.76, p.333-343 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3 |
container_end_page | 343 |
container_issue | |
container_start_page | 333 |
container_title | Acta biomaterialia |
container_volume | 76 |
creator | Gómez-Cerezo, N. Verron, E. Montouillout, V. Fayon, F. Lagadec, P. Bouler, J.M. Bujoli, B. Arcos, D. Vallet-Regí, M. |
description | [Display omitted]
Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been characterized using 29Si, 71Ga and 31P NMR analysis, demonstrating that Ga(III) is efficiently incorporated as both, network former (GaO4 units) and network modifier (GaO6 units). In vitro bioactivity tests evidenced that Ga-containing MBGs retain their capability for nucleation and growth of an apatite-like layer in contact with a simulated body fluid with ion concentrations nearly equal to those of human blood plasma. Finally, in vitro cell culture tests evidenced that Ga incorporation results in a selective effect on osteoblasts and osteoclasts. Indeed, the presence of this element enhances the early differentiation towards osteoblast phenotype while disturbing osteoclastogenesis. Considering these results, Ga-doped MBGs might be proposed as bone substitutes, especially in osteoporosis scenarios.
Osteoporosis is the most prevalent bone disease affecting millions of patients every year. However, there is a lack of bone grafts specifically designed for the treatment of bone defects occurred because of osteoporotic fractures. The consequence is that osteoporotic bone defects are commonly treated with the same biomaterials intended for high quality bone tissue. In this work we have prepared mesoporous bioactive glasses doped with gallium, demonstrating osteoinductive capability by promoting the differentiation of pre-osteoblast toward osteoblasts and partial inhibition of osteoclastogenesis. Through a deep study of the local environment of gallium within the mesoporous matrix, this work shows that gallium release is not required to produce this effect on osteoblasts and osteoclasts. In this sense, the presence of this element at the surface of the mesoporous bioactive glasses would be enough to locally promote bone formation while reducing bone resorption. |
doi_str_mv | 10.1016/j.actbio.2018.06.036 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01898580v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706118303829</els_id><sourcerecordid>2063709380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0Eou3AP0DIEhu6SPAj8WODVFVAkUZiU9aW7dxMPUriYCcj9d_jIaULFqzsa33n-tx7EHpHSU0JFZ-OtfWLC7FmhKqaiJpw8QJdUiVVJVuhXpa7bFgliaAX6CrnIyFcUaZeowumtRCyVZfI3T8ATpDnOGXAscdzgirmBaIbbF4ytlOH_9R-q5eID3YYwjpiH6fFhilMBzxCjnNMcc24WCrGwgnwoSgy5DfoVW-HDG-fzh36-fXL_e1dtf_x7fvtzb7yjSRL5RjIFrxzjdKKKM1pw3rrNfeiYbJRzlLCuHUEWs6pE77jlsleWC0aK5njO3S99X2wg5lTGG16NNEGc3ezN-e3sietWkVOtLAfN3ZO8dcKeTFjyB6GwU5QhjCMCC6J5ooU9MM_6DGuaSqTGEaLR0Z0MbtDzUb5FHNO0D87oMSc8zJHs-VlznkZIkzJq8jePzVf3Qjds-hvQAX4vAFQNncKkEz2ASYPXUjgF9PF8P8ffgORsKhI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114220989</pqid></control><display><type>article</type><title>The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses</title><source>ScienceDirect Journals</source><creator>Gómez-Cerezo, N. ; Verron, E. ; Montouillout, V. ; Fayon, F. ; Lagadec, P. ; Bouler, J.M. ; Bujoli, B. ; Arcos, D. ; Vallet-Regí, M.</creator><creatorcontrib>Gómez-Cerezo, N. ; Verron, E. ; Montouillout, V. ; Fayon, F. ; Lagadec, P. ; Bouler, J.M. ; Bujoli, B. ; Arcos, D. ; Vallet-Regí, M.</creatorcontrib><description>[Display omitted]
Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been characterized using 29Si, 71Ga and 31P NMR analysis, demonstrating that Ga(III) is efficiently incorporated as both, network former (GaO4 units) and network modifier (GaO6 units). In vitro bioactivity tests evidenced that Ga-containing MBGs retain their capability for nucleation and growth of an apatite-like layer in contact with a simulated body fluid with ion concentrations nearly equal to those of human blood plasma. Finally, in vitro cell culture tests evidenced that Ga incorporation results in a selective effect on osteoblasts and osteoclasts. Indeed, the presence of this element enhances the early differentiation towards osteoblast phenotype while disturbing osteoclastogenesis. Considering these results, Ga-doped MBGs might be proposed as bone substitutes, especially in osteoporosis scenarios.
Osteoporosis is the most prevalent bone disease affecting millions of patients every year. However, there is a lack of bone grafts specifically designed for the treatment of bone defects occurred because of osteoporotic fractures. The consequence is that osteoporotic bone defects are commonly treated with the same biomaterials intended for high quality bone tissue. In this work we have prepared mesoporous bioactive glasses doped with gallium, demonstrating osteoinductive capability by promoting the differentiation of pre-osteoblast toward osteoblasts and partial inhibition of osteoclastogenesis. Through a deep study of the local environment of gallium within the mesoporous matrix, this work shows that gallium release is not required to produce this effect on osteoblasts and osteoclasts. In this sense, the presence of this element at the surface of the mesoporous bioactive glasses would be enough to locally promote bone formation while reducing bone resorption.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2018.06.036</identifier><identifier>PMID: 29966758</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Apatite ; Biocompatibility ; Bioglass ; Biological activity ; Biomaterials ; Biomedical materials ; Blood plasma ; Body fluids ; Bone biomaterials ; Bone grafts ; Bone growth ; Bone resorption ; Cations ; Cell culture ; Chemical Sciences ; Defects ; Differentiation ; Evaporation ; Fractures ; Gallium ; Gallium oxides ; Genotype & phenotype ; Grafts ; In vitro methods and tests ; Material chemistry ; Mesoporous bioactive glasses ; NMR ; Nuclear magnetic resonance ; Osteoblast ; Osteoblastogenesis ; Osteoblasts ; Osteoclast ; Osteoclastogenesis ; Osteoclasts ; Osteogenesis ; Osteoporosis ; Phenotypes ; Phosphorus pentoxide ; Self-assembly ; Silicon dioxide ; Substitute bone ; Surgical implants</subject><ispartof>Acta biomaterialia, 2018-08, Vol.76, p.333-343</ispartof><rights>2018 Acta Materialia Inc.</rights><rights>Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Aug 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3</citedby><cites>FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3</cites><orcidid>0000-0001-9784-5584 ; 0000-0001-5086-5625 ; 0000-0002-8629-0170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29966758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01898580$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez-Cerezo, N.</creatorcontrib><creatorcontrib>Verron, E.</creatorcontrib><creatorcontrib>Montouillout, V.</creatorcontrib><creatorcontrib>Fayon, F.</creatorcontrib><creatorcontrib>Lagadec, P.</creatorcontrib><creatorcontrib>Bouler, J.M.</creatorcontrib><creatorcontrib>Bujoli, B.</creatorcontrib><creatorcontrib>Arcos, D.</creatorcontrib><creatorcontrib>Vallet-Regí, M.</creatorcontrib><title>The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been characterized using 29Si, 71Ga and 31P NMR analysis, demonstrating that Ga(III) is efficiently incorporated as both, network former (GaO4 units) and network modifier (GaO6 units). In vitro bioactivity tests evidenced that Ga-containing MBGs retain their capability for nucleation and growth of an apatite-like layer in contact with a simulated body fluid with ion concentrations nearly equal to those of human blood plasma. Finally, in vitro cell culture tests evidenced that Ga incorporation results in a selective effect on osteoblasts and osteoclasts. Indeed, the presence of this element enhances the early differentiation towards osteoblast phenotype while disturbing osteoclastogenesis. Considering these results, Ga-doped MBGs might be proposed as bone substitutes, especially in osteoporosis scenarios.
Osteoporosis is the most prevalent bone disease affecting millions of patients every year. However, there is a lack of bone grafts specifically designed for the treatment of bone defects occurred because of osteoporotic fractures. The consequence is that osteoporotic bone defects are commonly treated with the same biomaterials intended for high quality bone tissue. In this work we have prepared mesoporous bioactive glasses doped with gallium, demonstrating osteoinductive capability by promoting the differentiation of pre-osteoblast toward osteoblasts and partial inhibition of osteoclastogenesis. Through a deep study of the local environment of gallium within the mesoporous matrix, this work shows that gallium release is not required to produce this effect on osteoblasts and osteoclasts. In this sense, the presence of this element at the surface of the mesoporous bioactive glasses would be enough to locally promote bone formation while reducing bone resorption.</description><subject>Apatite</subject><subject>Biocompatibility</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Blood plasma</subject><subject>Body fluids</subject><subject>Bone biomaterials</subject><subject>Bone grafts</subject><subject>Bone growth</subject><subject>Bone resorption</subject><subject>Cations</subject><subject>Cell culture</subject><subject>Chemical Sciences</subject><subject>Defects</subject><subject>Differentiation</subject><subject>Evaporation</subject><subject>Fractures</subject><subject>Gallium</subject><subject>Gallium oxides</subject><subject>Genotype & phenotype</subject><subject>Grafts</subject><subject>In vitro methods and tests</subject><subject>Material chemistry</subject><subject>Mesoporous bioactive glasses</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Osteoblast</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoclast</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteogenesis</subject><subject>Osteoporosis</subject><subject>Phenotypes</subject><subject>Phosphorus pentoxide</subject><subject>Self-assembly</subject><subject>Silicon dioxide</subject><subject>Substitute bone</subject><subject>Surgical implants</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhS0Eou3AP0DIEhu6SPAj8WODVFVAkUZiU9aW7dxMPUriYCcj9d_jIaULFqzsa33n-tx7EHpHSU0JFZ-OtfWLC7FmhKqaiJpw8QJdUiVVJVuhXpa7bFgliaAX6CrnIyFcUaZeowumtRCyVZfI3T8ATpDnOGXAscdzgirmBaIbbF4ytlOH_9R-q5eID3YYwjpiH6fFhilMBzxCjnNMcc24WCrGwgnwoSgy5DfoVW-HDG-fzh36-fXL_e1dtf_x7fvtzb7yjSRL5RjIFrxzjdKKKM1pw3rrNfeiYbJRzlLCuHUEWs6pE77jlsleWC0aK5njO3S99X2wg5lTGG16NNEGc3ezN-e3sietWkVOtLAfN3ZO8dcKeTFjyB6GwU5QhjCMCC6J5ooU9MM_6DGuaSqTGEaLR0Z0MbtDzUb5FHNO0D87oMSc8zJHs-VlznkZIkzJq8jePzVf3Qjds-hvQAX4vAFQNncKkEz2ASYPXUjgF9PF8P8ffgORsKhI</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Gómez-Cerezo, N.</creator><creator>Verron, E.</creator><creator>Montouillout, V.</creator><creator>Fayon, F.</creator><creator>Lagadec, P.</creator><creator>Bouler, J.M.</creator><creator>Bujoli, B.</creator><creator>Arcos, D.</creator><creator>Vallet-Regí, M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9784-5584</orcidid><orcidid>https://orcid.org/0000-0001-5086-5625</orcidid><orcidid>https://orcid.org/0000-0002-8629-0170</orcidid></search><sort><creationdate>201808</creationdate><title>The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses</title><author>Gómez-Cerezo, N. ; Verron, E. ; Montouillout, V. ; Fayon, F. ; Lagadec, P. ; Bouler, J.M. ; Bujoli, B. ; Arcos, D. ; Vallet-Regí, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apatite</topic><topic>Biocompatibility</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Blood plasma</topic><topic>Body fluids</topic><topic>Bone biomaterials</topic><topic>Bone grafts</topic><topic>Bone growth</topic><topic>Bone resorption</topic><topic>Cations</topic><topic>Cell culture</topic><topic>Chemical Sciences</topic><topic>Defects</topic><topic>Differentiation</topic><topic>Evaporation</topic><topic>Fractures</topic><topic>Gallium</topic><topic>Gallium oxides</topic><topic>Genotype & phenotype</topic><topic>Grafts</topic><topic>In vitro methods and tests</topic><topic>Material chemistry</topic><topic>Mesoporous bioactive glasses</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Osteoblast</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoclast</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteogenesis</topic><topic>Osteoporosis</topic><topic>Phenotypes</topic><topic>Phosphorus pentoxide</topic><topic>Self-assembly</topic><topic>Silicon dioxide</topic><topic>Substitute bone</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Cerezo, N.</creatorcontrib><creatorcontrib>Verron, E.</creatorcontrib><creatorcontrib>Montouillout, V.</creatorcontrib><creatorcontrib>Fayon, F.</creatorcontrib><creatorcontrib>Lagadec, P.</creatorcontrib><creatorcontrib>Bouler, J.M.</creatorcontrib><creatorcontrib>Bujoli, B.</creatorcontrib><creatorcontrib>Arcos, D.</creatorcontrib><creatorcontrib>Vallet-Regí, M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Cerezo, N.</au><au>Verron, E.</au><au>Montouillout, V.</au><au>Fayon, F.</au><au>Lagadec, P.</au><au>Bouler, J.M.</au><au>Bujoli, B.</au><au>Arcos, D.</au><au>Vallet-Regí, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2018-08</date><risdate>2018</risdate><volume>76</volume><spage>333</spage><epage>343</epage><pages>333-343</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Mesoporous bioactive glasses (MBGs) in the system SiO2-CaO-P2O5-Ga2O3 have been synthesized by the evaporation induced self-assembly method and subsequent impregnation with Ga cations. Two different compositions have been prepared and the local environment of Ga(III) has been characterized using 29Si, 71Ga and 31P NMR analysis, demonstrating that Ga(III) is efficiently incorporated as both, network former (GaO4 units) and network modifier (GaO6 units). In vitro bioactivity tests evidenced that Ga-containing MBGs retain their capability for nucleation and growth of an apatite-like layer in contact with a simulated body fluid with ion concentrations nearly equal to those of human blood plasma. Finally, in vitro cell culture tests evidenced that Ga incorporation results in a selective effect on osteoblasts and osteoclasts. Indeed, the presence of this element enhances the early differentiation towards osteoblast phenotype while disturbing osteoclastogenesis. Considering these results, Ga-doped MBGs might be proposed as bone substitutes, especially in osteoporosis scenarios.
Osteoporosis is the most prevalent bone disease affecting millions of patients every year. However, there is a lack of bone grafts specifically designed for the treatment of bone defects occurred because of osteoporotic fractures. The consequence is that osteoporotic bone defects are commonly treated with the same biomaterials intended for high quality bone tissue. In this work we have prepared mesoporous bioactive glasses doped with gallium, demonstrating osteoinductive capability by promoting the differentiation of pre-osteoblast toward osteoblasts and partial inhibition of osteoclastogenesis. Through a deep study of the local environment of gallium within the mesoporous matrix, this work shows that gallium release is not required to produce this effect on osteoblasts and osteoclasts. In this sense, the presence of this element at the surface of the mesoporous bioactive glasses would be enough to locally promote bone formation while reducing bone resorption.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29966758</pmid><doi>10.1016/j.actbio.2018.06.036</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9784-5584</orcidid><orcidid>https://orcid.org/0000-0001-5086-5625</orcidid><orcidid>https://orcid.org/0000-0002-8629-0170</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2018-08, Vol.76, p.333-343 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01898580v1 |
source | ScienceDirect Journals |
subjects | Apatite Biocompatibility Bioglass Biological activity Biomaterials Biomedical materials Blood plasma Body fluids Bone biomaterials Bone grafts Bone growth Bone resorption Cations Cell culture Chemical Sciences Defects Differentiation Evaporation Fractures Gallium Gallium oxides Genotype & phenotype Grafts In vitro methods and tests Material chemistry Mesoporous bioactive glasses NMR Nuclear magnetic resonance Osteoblast Osteoblastogenesis Osteoblasts Osteoclast Osteoclastogenesis Osteoclasts Osteogenesis Osteoporosis Phenotypes Phosphorus pentoxide Self-assembly Silicon dioxide Substitute bone Surgical implants |
title | The response of pre-osteoblasts and osteoclasts to gallium containing mesoporous bioactive glasses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20response%20of%20pre-osteoblasts%20and%20osteoclasts%20to%20gallium%20containing%20mesoporous%20bioactive%20glasses&rft.jtitle=Acta%20biomaterialia&rft.au=G%C3%B3mez-Cerezo,%20N.&rft.date=2018-08&rft.volume=76&rft.spage=333&rft.epage=343&rft.pages=333-343&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2018.06.036&rft_dat=%3Cproquest_hal_p%3E2063709380%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-b2e75ecbb48980893142fac93c642748ba1023ab0e5331b6cd3a27f6a964a72b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2114220989&rft_id=info:pmid/29966758&rfr_iscdi=true |