Loading…

pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies

Most biological molecules contain acido-basic groups that modulate their structure and interactions. A consequence is that pH gradients, local heterogeneities and dynamic variations are used by cells and organisms to drive or regulate specific biological functions including energetic metabolism, ves...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta. Biomembranes 2018-10, Vol.1860 (10), p.2042-2063
Main Authors: Angelova, Miglena I., Bitbol, Anne-Florence, Seigneuret, Michel, Staneva, Galya, Kodama, Atsuji, Sakuma, Yuka, Kawakatsu, Toshihiro, Imai, Masayuki, Puff, Nicolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-93dc170bc4f4f380bbf1c60409cb68b9456a66db16a5d9ada471da8c1419ac913
cites cdi_FETCH-LOGICAL-c442t-93dc170bc4f4f380bbf1c60409cb68b9456a66db16a5d9ada471da8c1419ac913
container_end_page 2063
container_issue 10
container_start_page 2042
container_title Biochimica et biophysica acta. Biomembranes
container_volume 1860
creator Angelova, Miglena I.
Bitbol, Anne-Florence
Seigneuret, Michel
Staneva, Galya
Kodama, Atsuji
Sakuma, Yuka
Kawakatsu, Toshihiro
Imai, Masayuki
Puff, Nicolas
description Most biological molecules contain acido-basic groups that modulate their structure and interactions. A consequence is that pH gradients, local heterogeneities and dynamic variations are used by cells and organisms to drive or regulate specific biological functions including energetic metabolism, vesicular traffic, migration and spatial patterning of tissues in development. While the direct or regulatory role of pH in protein function is well documented, the role of hydrogen and hydroxyl ions in modulating the properties of lipid assemblies such as bilayer membranes is only beginning to be understood. Here, we review approaches using artificial lipid vesicles that have been instrumental in providing an understanding of the influence of pH gradients and local variations on membrane vectorial motional processes: migration, membrane curvature effects promoting global or local deformations, crowding generation by segregative polarization processes. In the case of pH induced local deformations, an extensive theoretical framework is given and an application to a specific biological issue, namely the structure and stability of mitochondrial cristae, is described. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. [Display omitted] •Membrane lipids are directly affected by pH, due to their acido-basic properties.•pH change can induce lipid vesicle migration and global deformation.•pH change can cause polarization in phase-separated membrane of GUVs.•Localized pH heterogeneities can induce local dynamical membrane deformations.•Mitochondrial cristae formation has been mimicked using lipid-only systems.
doi_str_mv 10.1016/j.bbamem.2018.02.026
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01901246v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005273618300671</els_id><sourcerecordid>2010843009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-93dc170bc4f4f380bbf1c60409cb68b9456a66db16a5d9ada471da8c1419ac913</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxUVpaNy036AUHVvIuiOtVl71EAghrQuGXNKz0L9NZHalrbQ2uPd878jeNMfCgDTD770HMwh9IrAkQPi37VJrNbhhSYG0S6Cl-Bu0IO1KVJQz-hYtAKCp6Krm5-h9zlsoMkabd-iciqb8gSzQ07jG2YXswwPWB9z70duMfcDFWScVXP6O7x8d7nbBlrQwqT7j2OFxXdnk966A_iGpycdwicfYq-T_njqsgsXWdTENp_6kOtlj7Xt1cAmrnEtI713-gM66Yuw-vrwX6PeP2_ubdbW5-_nr5npTGcboVInaGrICbVjHuroFrTtiODAQRvNWC9ZwxbnVhKvGCmUVWxGrWkMYEcoIUl-gr7Pvo-rlmPyg0kFG5eX6eiOPMyACCGV8f2S_zOyY4p-dy5McfDau78tS4i7LsnZoWQ0gCspm1KSYc3LdqzcBeTyW3Mr5WEdVK4GW4kX2-SVhpwdnX0X_rlOAqxlwZSd775LMxrtgnPXJmUna6P-f8Ax2tKiH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010843009</pqid></control><display><type>article</type><title>pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Angelova, Miglena I. ; Bitbol, Anne-Florence ; Seigneuret, Michel ; Staneva, Galya ; Kodama, Atsuji ; Sakuma, Yuka ; Kawakatsu, Toshihiro ; Imai, Masayuki ; Puff, Nicolas</creator><creatorcontrib>Angelova, Miglena I. ; Bitbol, Anne-Florence ; Seigneuret, Michel ; Staneva, Galya ; Kodama, Atsuji ; Sakuma, Yuka ; Kawakatsu, Toshihiro ; Imai, Masayuki ; Puff, Nicolas</creatorcontrib><description>Most biological molecules contain acido-basic groups that modulate their structure and interactions. A consequence is that pH gradients, local heterogeneities and dynamic variations are used by cells and organisms to drive or regulate specific biological functions including energetic metabolism, vesicular traffic, migration and spatial patterning of tissues in development. While the direct or regulatory role of pH in protein function is well documented, the role of hydrogen and hydroxyl ions in modulating the properties of lipid assemblies such as bilayer membranes is only beginning to be understood. Here, we review approaches using artificial lipid vesicles that have been instrumental in providing an understanding of the influence of pH gradients and local variations on membrane vectorial motional processes: migration, membrane curvature effects promoting global or local deformations, crowding generation by segregative polarization processes. In the case of pH induced local deformations, an extensive theoretical framework is given and an application to a specific biological issue, namely the structure and stability of mitochondrial cristae, is described. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. [Display omitted] •Membrane lipids are directly affected by pH, due to their acido-basic properties.•pH change can induce lipid vesicle migration and global deformation.•pH change can cause polarization in phase-separated membrane of GUVs.•Localized pH heterogeneities can induce local dynamical membrane deformations.•Mitochondrial cristae formation has been mimicked using lipid-only systems.</description><identifier>ISSN: 0005-2736</identifier><identifier>EISSN: 1879-2642</identifier><identifier>DOI: 10.1016/j.bbamem.2018.02.026</identifier><identifier>PMID: 29501601</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alzheimer's disease ; Biological Physics ; Giant unilamellar vesicle ; Lipid membrane dynamics ; Local chemical gradient ; Local chemical modification ; Mitochondria ; Physics</subject><ispartof>Biochimica et biophysica acta. Biomembranes, 2018-10, Vol.1860 (10), p.2042-2063</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-93dc170bc4f4f380bbf1c60409cb68b9456a66db16a5d9ada471da8c1419ac913</citedby><cites>FETCH-LOGICAL-c442t-93dc170bc4f4f380bbf1c60409cb68b9456a66db16a5d9ada471da8c1419ac913</cites><orcidid>0000-0003-1020-494X ; 0000-0002-4460-133X ; 0000-0001-8501-6893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29501601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01901246$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Angelova, Miglena I.</creatorcontrib><creatorcontrib>Bitbol, Anne-Florence</creatorcontrib><creatorcontrib>Seigneuret, Michel</creatorcontrib><creatorcontrib>Staneva, Galya</creatorcontrib><creatorcontrib>Kodama, Atsuji</creatorcontrib><creatorcontrib>Sakuma, Yuka</creatorcontrib><creatorcontrib>Kawakatsu, Toshihiro</creatorcontrib><creatorcontrib>Imai, Masayuki</creatorcontrib><creatorcontrib>Puff, Nicolas</creatorcontrib><title>pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies</title><title>Biochimica et biophysica acta. Biomembranes</title><addtitle>Biochim Biophys Acta Biomembr</addtitle><description>Most biological molecules contain acido-basic groups that modulate their structure and interactions. A consequence is that pH gradients, local heterogeneities and dynamic variations are used by cells and organisms to drive or regulate specific biological functions including energetic metabolism, vesicular traffic, migration and spatial patterning of tissues in development. While the direct or regulatory role of pH in protein function is well documented, the role of hydrogen and hydroxyl ions in modulating the properties of lipid assemblies such as bilayer membranes is only beginning to be understood. Here, we review approaches using artificial lipid vesicles that have been instrumental in providing an understanding of the influence of pH gradients and local variations on membrane vectorial motional processes: migration, membrane curvature effects promoting global or local deformations, crowding generation by segregative polarization processes. In the case of pH induced local deformations, an extensive theoretical framework is given and an application to a specific biological issue, namely the structure and stability of mitochondrial cristae, is described. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. [Display omitted] •Membrane lipids are directly affected by pH, due to their acido-basic properties.•pH change can induce lipid vesicle migration and global deformation.•pH change can cause polarization in phase-separated membrane of GUVs.•Localized pH heterogeneities can induce local dynamical membrane deformations.•Mitochondrial cristae formation has been mimicked using lipid-only systems.</description><subject>Alzheimer's disease</subject><subject>Biological Physics</subject><subject>Giant unilamellar vesicle</subject><subject>Lipid membrane dynamics</subject><subject>Local chemical gradient</subject><subject>Local chemical modification</subject><subject>Mitochondria</subject><subject>Physics</subject><issn>0005-2736</issn><issn>1879-2642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rGzEQxUVpaNy036AUHVvIuiOtVl71EAghrQuGXNKz0L9NZHalrbQ2uPd878jeNMfCgDTD770HMwh9IrAkQPi37VJrNbhhSYG0S6Cl-Bu0IO1KVJQz-hYtAKCp6Krm5-h9zlsoMkabd-iciqb8gSzQ07jG2YXswwPWB9z70duMfcDFWScVXP6O7x8d7nbBlrQwqT7j2OFxXdnk966A_iGpycdwicfYq-T_njqsgsXWdTENp_6kOtlj7Xt1cAmrnEtI713-gM66Yuw-vrwX6PeP2_ubdbW5-_nr5npTGcboVInaGrICbVjHuroFrTtiODAQRvNWC9ZwxbnVhKvGCmUVWxGrWkMYEcoIUl-gr7Pvo-rlmPyg0kFG5eX6eiOPMyACCGV8f2S_zOyY4p-dy5McfDau78tS4i7LsnZoWQ0gCspm1KSYc3LdqzcBeTyW3Mr5WEdVK4GW4kX2-SVhpwdnX0X_rlOAqxlwZSd775LMxrtgnPXJmUna6P-f8Ax2tKiH</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Angelova, Miglena I.</creator><creator>Bitbol, Anne-Florence</creator><creator>Seigneuret, Michel</creator><creator>Staneva, Galya</creator><creator>Kodama, Atsuji</creator><creator>Sakuma, Yuka</creator><creator>Kawakatsu, Toshihiro</creator><creator>Imai, Masayuki</creator><creator>Puff, Nicolas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1020-494X</orcidid><orcidid>https://orcid.org/0000-0002-4460-133X</orcidid><orcidid>https://orcid.org/0000-0001-8501-6893</orcidid></search><sort><creationdate>20181001</creationdate><title>pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies</title><author>Angelova, Miglena I. ; Bitbol, Anne-Florence ; Seigneuret, Michel ; Staneva, Galya ; Kodama, Atsuji ; Sakuma, Yuka ; Kawakatsu, Toshihiro ; Imai, Masayuki ; Puff, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-93dc170bc4f4f380bbf1c60409cb68b9456a66db16a5d9ada471da8c1419ac913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alzheimer's disease</topic><topic>Biological Physics</topic><topic>Giant unilamellar vesicle</topic><topic>Lipid membrane dynamics</topic><topic>Local chemical gradient</topic><topic>Local chemical modification</topic><topic>Mitochondria</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelova, Miglena I.</creatorcontrib><creatorcontrib>Bitbol, Anne-Florence</creatorcontrib><creatorcontrib>Seigneuret, Michel</creatorcontrib><creatorcontrib>Staneva, Galya</creatorcontrib><creatorcontrib>Kodama, Atsuji</creatorcontrib><creatorcontrib>Sakuma, Yuka</creatorcontrib><creatorcontrib>Kawakatsu, Toshihiro</creatorcontrib><creatorcontrib>Imai, Masayuki</creatorcontrib><creatorcontrib>Puff, Nicolas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Biochimica et biophysica acta. Biomembranes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angelova, Miglena I.</au><au>Bitbol, Anne-Florence</au><au>Seigneuret, Michel</au><au>Staneva, Galya</au><au>Kodama, Atsuji</au><au>Sakuma, Yuka</au><au>Kawakatsu, Toshihiro</au><au>Imai, Masayuki</au><au>Puff, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies</atitle><jtitle>Biochimica et biophysica acta. Biomembranes</jtitle><addtitle>Biochim Biophys Acta Biomembr</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>1860</volume><issue>10</issue><spage>2042</spage><epage>2063</epage><pages>2042-2063</pages><issn>0005-2736</issn><eissn>1879-2642</eissn><abstract>Most biological molecules contain acido-basic groups that modulate their structure and interactions. A consequence is that pH gradients, local heterogeneities and dynamic variations are used by cells and organisms to drive or regulate specific biological functions including energetic metabolism, vesicular traffic, migration and spatial patterning of tissues in development. While the direct or regulatory role of pH in protein function is well documented, the role of hydrogen and hydroxyl ions in modulating the properties of lipid assemblies such as bilayer membranes is only beginning to be understood. Here, we review approaches using artificial lipid vesicles that have been instrumental in providing an understanding of the influence of pH gradients and local variations on membrane vectorial motional processes: migration, membrane curvature effects promoting global or local deformations, crowding generation by segregative polarization processes. In the case of pH induced local deformations, an extensive theoretical framework is given and an application to a specific biological issue, namely the structure and stability of mitochondrial cristae, is described. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. [Display omitted] •Membrane lipids are directly affected by pH, due to their acido-basic properties.•pH change can induce lipid vesicle migration and global deformation.•pH change can cause polarization in phase-separated membrane of GUVs.•Localized pH heterogeneities can induce local dynamical membrane deformations.•Mitochondrial cristae formation has been mimicked using lipid-only systems.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29501601</pmid><doi>10.1016/j.bbamem.2018.02.026</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1020-494X</orcidid><orcidid>https://orcid.org/0000-0002-4460-133X</orcidid><orcidid>https://orcid.org/0000-0001-8501-6893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2736
ispartof Biochimica et biophysica acta. Biomembranes, 2018-10, Vol.1860 (10), p.2042-2063
issn 0005-2736
1879-2642
language eng
recordid cdi_hal_primary_oai_HAL_hal_01901246v1
source ScienceDirect Freedom Collection 2022-2024
subjects Alzheimer's disease
Biological Physics
Giant unilamellar vesicle
Lipid membrane dynamics
Local chemical gradient
Local chemical modification
Mitochondria
Physics
title pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH%20sensing%20by%20lipids%20in%20membranes:%20The%20fundamentals%20of%20pH-driven%20migration,%20polarization%20and%20deformations%20of%20lipid%20bilayer%20assemblies&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Biomembranes&rft.au=Angelova,%20Miglena%20I.&rft.date=2018-10-01&rft.volume=1860&rft.issue=10&rft.spage=2042&rft.epage=2063&rft.pages=2042-2063&rft.issn=0005-2736&rft.eissn=1879-2642&rft_id=info:doi/10.1016/j.bbamem.2018.02.026&rft_dat=%3Cproquest_hal_p%3E2010843009%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-93dc170bc4f4f380bbf1c60409cb68b9456a66db16a5d9ada471da8c1419ac913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2010843009&rft_id=info:pmid/29501601&rfr_iscdi=true