Loading…

Using a geometric formulation of annular-like shape priors for constraining variational level-sets

► Segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. ► Design a new level-set framework specifically dedicated to the detection of annular shapes. ► Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition letters 2011-07, Vol.32 (9), p.1240-1249
Main Authors: Alessandrini, M., Dietenbeck, T., Basset, O., Friboulet, D., Bernard, O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93
cites cdi_FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93
container_end_page 1249
container_issue 9
container_start_page 1240
container_title Pattern recognition letters
container_volume 32
creator Alessandrini, M.
Dietenbeck, T.
Basset, O.
Friboulet, D.
Bernard, O.
description ► Segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. ► Design a new level-set framework specifically dedicated to the detection of annular shapes. ► Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function. In this paper we address the segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. Such patterns are indeed recurrent in many image processing applications. In this context, we develop a level-set framework specifically dedicated to the detection of annular shapes. Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function. The behavior of this approach is illustrated on images from various fields. An evaluation is then performed for the myocardium detection in MRI and ultrasound cardiac images.
doi_str_mv 10.1016/j.patrec.2011.03.018
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01919687v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865511000894</els_id><sourcerecordid>S0167865511000894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxi8MDAknPPhOAtSVQFFqsRCZ-vqXlqXNK7sUIl_j0MQI5Nl63le372M3QpIBQj5sE-P2HsyaQZCpJCnINQZmwhVZUmVF8U5m0SsSpQsy0t2FcIeAGReqwlbr4Ltthz5ltyBem8Nb5w_fLbYW9dx13DsunjzSWs_iIcdHokfvXU-DCA3rgu9R9sNKSf09sfDlrd0ojYJ1IdrdtFgG-jm95yy1fPT-3yRLN9eXuezZWLyCvoka6ra1AgoynIDm8LAGlEqwHVZyLpSQtRrWWQ5SjKVIlkiEBpVgKhRRDOfsvsxd4etjiMe0H9ph1YvZks9vEVS1FJVJxHZYmSNdyF4av4EAXroVO_12KkeOtWQR1tF7W7UjhgMto3Hztjw52ZxvCITELnHkaO478mS18FY6gxtbIzs9cbZ_z_6BpaAj5Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using a geometric formulation of annular-like shape priors for constraining variational level-sets</title><source>ScienceDirect Freedom Collection</source><creator>Alessandrini, M. ; Dietenbeck, T. ; Basset, O. ; Friboulet, D. ; Bernard, O.</creator><creatorcontrib>Alessandrini, M. ; Dietenbeck, T. ; Basset, O. ; Friboulet, D. ; Bernard, O.</creatorcontrib><description>► Segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. ► Design a new level-set framework specifically dedicated to the detection of annular shapes. ► Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function. In this paper we address the segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. Such patterns are indeed recurrent in many image processing applications. In this context, we develop a level-set framework specifically dedicated to the detection of annular shapes. Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function. The behavior of this approach is illustrated on images from various fields. An evaluation is then performed for the myocardium detection in MRI and ultrasound cardiac images.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2011.03.018</identifier><identifier>CODEN: PRLEDG</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Annular shapes ; Applied sciences ; Biological and medical sciences ; Computer Science ; Computerized, statistical medical data processing and models in biomedicine ; Exact sciences and technology ; Image processing ; Information, signal and communications theory ; Least square fitting ; Level-sets ; Medical Imaging ; Medical management aid. Diagnosis aid ; Medical sciences ; Segmentation ; Signal processing ; Telecommunications and information theory</subject><ispartof>Pattern recognition letters, 2011-07, Vol.32 (9), p.1240-1249</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93</citedby><cites>FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93</cites><orcidid>0000-0003-0752-9946 ; 0009-0001-8612-835X ; 0000-0002-9166-7964 ; 0000-0001-5643-0497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24234210$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01919687$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alessandrini, M.</creatorcontrib><creatorcontrib>Dietenbeck, T.</creatorcontrib><creatorcontrib>Basset, O.</creatorcontrib><creatorcontrib>Friboulet, D.</creatorcontrib><creatorcontrib>Bernard, O.</creatorcontrib><title>Using a geometric formulation of annular-like shape priors for constraining variational level-sets</title><title>Pattern recognition letters</title><description>► Segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. ► Design a new level-set framework specifically dedicated to the detection of annular shapes. ► Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function. In this paper we address the segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. Such patterns are indeed recurrent in many image processing applications. In this context, we develop a level-set framework specifically dedicated to the detection of annular shapes. Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function. The behavior of this approach is illustrated on images from various fields. An evaluation is then performed for the myocardium detection in MRI and ultrasound cardiac images.</description><subject>Annular shapes</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Computer Science</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Exact sciences and technology</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Least square fitting</subject><subject>Level-sets</subject><subject>Medical Imaging</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Segmentation</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxi8MDAknPPhOAtSVQFFqsRCZ-vqXlqXNK7sUIl_j0MQI5Nl63le372M3QpIBQj5sE-P2HsyaQZCpJCnINQZmwhVZUmVF8U5m0SsSpQsy0t2FcIeAGReqwlbr4Ltthz5ltyBem8Nb5w_fLbYW9dx13DsunjzSWs_iIcdHokfvXU-DCA3rgu9R9sNKSf09sfDlrd0ojYJ1IdrdtFgG-jm95yy1fPT-3yRLN9eXuezZWLyCvoka6ra1AgoynIDm8LAGlEqwHVZyLpSQtRrWWQ5SjKVIlkiEBpVgKhRRDOfsvsxd4etjiMe0H9ph1YvZks9vEVS1FJVJxHZYmSNdyF4av4EAXroVO_12KkeOtWQR1tF7W7UjhgMto3Hztjw52ZxvCITELnHkaO478mS18FY6gxtbIzs9cbZ_z_6BpaAj5Y</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Alessandrini, M.</creator><creator>Dietenbeck, T.</creator><creator>Basset, O.</creator><creator>Friboulet, D.</creator><creator>Bernard, O.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0752-9946</orcidid><orcidid>https://orcid.org/0009-0001-8612-835X</orcidid><orcidid>https://orcid.org/0000-0002-9166-7964</orcidid><orcidid>https://orcid.org/0000-0001-5643-0497</orcidid></search><sort><creationdate>20110701</creationdate><title>Using a geometric formulation of annular-like shape priors for constraining variational level-sets</title><author>Alessandrini, M. ; Dietenbeck, T. ; Basset, O. ; Friboulet, D. ; Bernard, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Annular shapes</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Computer Science</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Exact sciences and technology</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Least square fitting</topic><topic>Level-sets</topic><topic>Medical Imaging</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Segmentation</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alessandrini, M.</creatorcontrib><creatorcontrib>Dietenbeck, T.</creatorcontrib><creatorcontrib>Basset, O.</creatorcontrib><creatorcontrib>Friboulet, D.</creatorcontrib><creatorcontrib>Bernard, O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alessandrini, M.</au><au>Dietenbeck, T.</au><au>Basset, O.</au><au>Friboulet, D.</au><au>Bernard, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using a geometric formulation of annular-like shape priors for constraining variational level-sets</atitle><jtitle>Pattern recognition letters</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>32</volume><issue>9</issue><spage>1240</spage><epage>1249</epage><pages>1240-1249</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><coden>PRLEDG</coden><abstract>► Segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. ► Design a new level-set framework specifically dedicated to the detection of annular shapes. ► Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function. In this paper we address the segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. Such patterns are indeed recurrent in many image processing applications. In this context, we develop a level-set framework specifically dedicated to the detection of annular shapes. Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function. The behavior of this approach is illustrated on images from various fields. An evaluation is then performed for the myocardium detection in MRI and ultrasound cardiac images.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2011.03.018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0752-9946</orcidid><orcidid>https://orcid.org/0009-0001-8612-835X</orcidid><orcidid>https://orcid.org/0000-0002-9166-7964</orcidid><orcidid>https://orcid.org/0000-0001-5643-0497</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2011-07, Vol.32 (9), p.1240-1249
issn 0167-8655
1872-7344
language eng
recordid cdi_hal_primary_oai_HAL_hal_01919687v1
source ScienceDirect Freedom Collection
subjects Annular shapes
Applied sciences
Biological and medical sciences
Computer Science
Computerized, statistical medical data processing and models in biomedicine
Exact sciences and technology
Image processing
Information, signal and communications theory
Least square fitting
Level-sets
Medical Imaging
Medical management aid. Diagnosis aid
Medical sciences
Segmentation
Signal processing
Telecommunications and information theory
title Using a geometric formulation of annular-like shape priors for constraining variational level-sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20a%20geometric%20formulation%20of%20annular-like%20shape%20priors%20for%20constraining%20variational%20level-sets&rft.jtitle=Pattern%20recognition%20letters&rft.au=Alessandrini,%20M.&rft.date=2011-07-01&rft.volume=32&rft.issue=9&rft.spage=1240&rft.epage=1249&rft.pages=1240-1249&rft.issn=0167-8655&rft.eissn=1872-7344&rft.coden=PRLEDG&rft_id=info:doi/10.1016/j.patrec.2011.03.018&rft_dat=%3Celsevier_hal_p%3ES0167865511000894%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true