Loading…
Using a geometric formulation of annular-like shape priors for constraining variational level-sets
► Segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. ► Design a new level-set framework specifically dedicated to the detection of annular shapes. ► Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model...
Saved in:
Published in: | Pattern recognition letters 2011-07, Vol.32 (9), p.1240-1249 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93 |
container_end_page | 1249 |
container_issue | 9 |
container_start_page | 1240 |
container_title | Pattern recognition letters |
container_volume | 32 |
creator | Alessandrini, M. Dietenbeck, T. Basset, O. Friboulet, D. Bernard, O. |
description | ► Segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. ► Design a new level-set framework specifically dedicated to the detection of annular shapes. ► Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function.
In this paper we address the segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. Such patterns are indeed recurrent in many image processing applications. In this context, we develop a level-set framework specifically dedicated to the detection of annular shapes. Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function. The behavior of this approach is illustrated on images from various fields. An evaluation is then performed for the myocardium detection in MRI and ultrasound cardiac images. |
doi_str_mv | 10.1016/j.patrec.2011.03.018 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01919687v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865511000894</els_id><sourcerecordid>S0167865511000894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxi8MDAknPPhOAtSVQFFqsRCZ-vqXlqXNK7sUIl_j0MQI5Nl63le372M3QpIBQj5sE-P2HsyaQZCpJCnINQZmwhVZUmVF8U5m0SsSpQsy0t2FcIeAGReqwlbr4Ltthz5ltyBem8Nb5w_fLbYW9dx13DsunjzSWs_iIcdHokfvXU-DCA3rgu9R9sNKSf09sfDlrd0ojYJ1IdrdtFgG-jm95yy1fPT-3yRLN9eXuezZWLyCvoka6ra1AgoynIDm8LAGlEqwHVZyLpSQtRrWWQ5SjKVIlkiEBpVgKhRRDOfsvsxd4etjiMe0H9ph1YvZks9vEVS1FJVJxHZYmSNdyF4av4EAXroVO_12KkeOtWQR1tF7W7UjhgMto3Hztjw52ZxvCITELnHkaO478mS18FY6gxtbIzs9cbZ_z_6BpaAj5Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using a geometric formulation of annular-like shape priors for constraining variational level-sets</title><source>ScienceDirect Freedom Collection</source><creator>Alessandrini, M. ; Dietenbeck, T. ; Basset, O. ; Friboulet, D. ; Bernard, O.</creator><creatorcontrib>Alessandrini, M. ; Dietenbeck, T. ; Basset, O. ; Friboulet, D. ; Bernard, O.</creatorcontrib><description>► Segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. ► Design a new level-set framework specifically dedicated to the detection of annular shapes. ► Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function.
In this paper we address the segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. Such patterns are indeed recurrent in many image processing applications. In this context, we develop a level-set framework specifically dedicated to the detection of annular shapes. Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function. The behavior of this approach is illustrated on images from various fields. An evaluation is then performed for the myocardium detection in MRI and ultrasound cardiac images.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2011.03.018</identifier><identifier>CODEN: PRLEDG</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Annular shapes ; Applied sciences ; Biological and medical sciences ; Computer Science ; Computerized, statistical medical data processing and models in biomedicine ; Exact sciences and technology ; Image processing ; Information, signal and communications theory ; Least square fitting ; Level-sets ; Medical Imaging ; Medical management aid. Diagnosis aid ; Medical sciences ; Segmentation ; Signal processing ; Telecommunications and information theory</subject><ispartof>Pattern recognition letters, 2011-07, Vol.32 (9), p.1240-1249</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93</citedby><cites>FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93</cites><orcidid>0000-0003-0752-9946 ; 0009-0001-8612-835X ; 0000-0002-9166-7964 ; 0000-0001-5643-0497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24234210$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01919687$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alessandrini, M.</creatorcontrib><creatorcontrib>Dietenbeck, T.</creatorcontrib><creatorcontrib>Basset, O.</creatorcontrib><creatorcontrib>Friboulet, D.</creatorcontrib><creatorcontrib>Bernard, O.</creatorcontrib><title>Using a geometric formulation of annular-like shape priors for constraining variational level-sets</title><title>Pattern recognition letters</title><description>► Segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. ► Design a new level-set framework specifically dedicated to the detection of annular shapes. ► Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function.
In this paper we address the segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. Such patterns are indeed recurrent in many image processing applications. In this context, we develop a level-set framework specifically dedicated to the detection of annular shapes. Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function. The behavior of this approach is illustrated on images from various fields. An evaluation is then performed for the myocardium detection in MRI and ultrasound cardiac images.</description><subject>Annular shapes</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Computer Science</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Exact sciences and technology</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Least square fitting</subject><subject>Level-sets</subject><subject>Medical Imaging</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Segmentation</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxi8MDAknPPhOAtSVQFFqsRCZ-vqXlqXNK7sUIl_j0MQI5Nl63le372M3QpIBQj5sE-P2HsyaQZCpJCnINQZmwhVZUmVF8U5m0SsSpQsy0t2FcIeAGReqwlbr4Ltthz5ltyBem8Nb5w_fLbYW9dx13DsunjzSWs_iIcdHokfvXU-DCA3rgu9R9sNKSf09sfDlrd0ojYJ1IdrdtFgG-jm95yy1fPT-3yRLN9eXuezZWLyCvoka6ra1AgoynIDm8LAGlEqwHVZyLpSQtRrWWQ5SjKVIlkiEBpVgKhRRDOfsvsxd4etjiMe0H9ph1YvZks9vEVS1FJVJxHZYmSNdyF4av4EAXroVO_12KkeOtWQR1tF7W7UjhgMto3Hztjw52ZxvCITELnHkaO478mS18FY6gxtbIzs9cbZ_z_6BpaAj5Y</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Alessandrini, M.</creator><creator>Dietenbeck, T.</creator><creator>Basset, O.</creator><creator>Friboulet, D.</creator><creator>Bernard, O.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0752-9946</orcidid><orcidid>https://orcid.org/0009-0001-8612-835X</orcidid><orcidid>https://orcid.org/0000-0002-9166-7964</orcidid><orcidid>https://orcid.org/0000-0001-5643-0497</orcidid></search><sort><creationdate>20110701</creationdate><title>Using a geometric formulation of annular-like shape priors for constraining variational level-sets</title><author>Alessandrini, M. ; Dietenbeck, T. ; Basset, O. ; Friboulet, D. ; Bernard, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Annular shapes</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Computer Science</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Exact sciences and technology</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Least square fitting</topic><topic>Level-sets</topic><topic>Medical Imaging</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Segmentation</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alessandrini, M.</creatorcontrib><creatorcontrib>Dietenbeck, T.</creatorcontrib><creatorcontrib>Basset, O.</creatorcontrib><creatorcontrib>Friboulet, D.</creatorcontrib><creatorcontrib>Bernard, O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alessandrini, M.</au><au>Dietenbeck, T.</au><au>Basset, O.</au><au>Friboulet, D.</au><au>Bernard, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using a geometric formulation of annular-like shape priors for constraining variational level-sets</atitle><jtitle>Pattern recognition letters</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>32</volume><issue>9</issue><spage>1240</spage><epage>1249</epage><pages>1240-1249</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><coden>PRLEDG</coden><abstract>► Segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. ► Design a new level-set framework specifically dedicated to the detection of annular shapes. ► Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function.
In this paper we address the segmentation of images exhibiting annular like shapes which may be approximated by two elliptical contours. Such patterns are indeed recurrent in many image processing applications. In this context, we develop a level-set framework specifically dedicated to the detection of annular shapes. Thanks to a fast solution to the least-squares fitting problem of similar patterns, our model handles the segmentation task efficiently with a single level-set function. The behavior of this approach is illustrated on images from various fields. An evaluation is then performed for the myocardium detection in MRI and ultrasound cardiac images.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2011.03.018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0752-9946</orcidid><orcidid>https://orcid.org/0009-0001-8612-835X</orcidid><orcidid>https://orcid.org/0000-0002-9166-7964</orcidid><orcidid>https://orcid.org/0000-0001-5643-0497</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2011-07, Vol.32 (9), p.1240-1249 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01919687v1 |
source | ScienceDirect Freedom Collection |
subjects | Annular shapes Applied sciences Biological and medical sciences Computer Science Computerized, statistical medical data processing and models in biomedicine Exact sciences and technology Image processing Information, signal and communications theory Least square fitting Level-sets Medical Imaging Medical management aid. Diagnosis aid Medical sciences Segmentation Signal processing Telecommunications and information theory |
title | Using a geometric formulation of annular-like shape priors for constraining variational level-sets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20a%20geometric%20formulation%20of%20annular-like%20shape%20priors%20for%20constraining%20variational%20level-sets&rft.jtitle=Pattern%20recognition%20letters&rft.au=Alessandrini,%20M.&rft.date=2011-07-01&rft.volume=32&rft.issue=9&rft.spage=1240&rft.epage=1249&rft.pages=1240-1249&rft.issn=0167-8655&rft.eissn=1872-7344&rft.coden=PRLEDG&rft_id=info:doi/10.1016/j.patrec.2011.03.018&rft_dat=%3Celsevier_hal_p%3ES0167865511000894%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-2f79c9a0a155d0d4c0baa680ab546978119b6423a6ec78e65a0eac84019a19c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |