Loading…

Overview of recent advances in stability of linear systems with time-varying delays

This study provides an overview and in-depth analysis of recent advances in stability of linear systems with time-varying delays. First, recent developments of a delay convex analysis approach, a reciprocally convex approach and the construction of Lyapunov–Krasovskii functionals are reviewed insigh...

Full description

Saved in:
Bibliographic Details
Published in:IET control theory & applications 2019-01, Vol.13 (1), p.1-16
Main Authors: Zhang, Xian-Ming, Han, Qing-Long, Seuret, Alexandre, Gouaisbaut, Frédéric, He, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793
cites cdi_FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793
container_end_page 16
container_issue 1
container_start_page 1
container_title IET control theory & applications
container_volume 13
creator Zhang, Xian-Ming
Han, Qing-Long
Seuret, Alexandre
Gouaisbaut, Frédéric
He, Yong
description This study provides an overview and in-depth analysis of recent advances in stability of linear systems with time-varying delays. First, recent developments of a delay convex analysis approach, a reciprocally convex approach and the construction of Lyapunov–Krasovskii functionals are reviewed insightfully. Second, in-depth analysis of the Bessel–Legendre inequality and some affine integral inequalities is made, and recent stability results are also summarised, including stability criteria for three cases of a time-varying delay, where information on the bounds of the time-varying delay and its derivative is totally known, partly known and completely unknown, respectively. Third, a number of stability criteria are developed for the above three cases of the time-varying delay by employing canonical Bessel–Legendre inequalities, together with augmented Lyapunov–Krasovskii functionals. It is shown through numerical examples that these stability criteria outperform some existing results. Finally, several challenging issues are pointed out to direct the near future research.
doi_str_mv 10.1049/iet-cta.2018.5188
format article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01920425v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CTH20001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqXwAWxeGVL8EttJxqoCilSpA2W2XOeFukoTZJtU-XscBTHCZOv5Hr-rQ8g9sAUwXj5aDIkJepEyKBYCiuKCzCAXkBRSpJe_d86vyY33R8aEkFzMyNu2R9dbPNOupg4NtoHqqtetQU9tS33Qe9vYMIzvjW1RO-oHH_Dk6dmGAw32hEmv3WDbD1phowd_S65q3Xi8-znn5P35abdaJ5vty-tquUkMZ0Vsk-EeZF4BGFEbXXFdIKKQgHkWxwxynZY5yJJnjMt9kQod-0tZG6ilzMtsTh6mfw-6UZ_OnmIL1Wmr1suNGmcMypTxVPQQszBljeu8d1j_AsDUaFBFgyoaVKNBNRqMTD4xZ9vg8D-gVrt1yhgbtyUTOWaO3Zdro4c_Nn0D_8iFNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Overview of recent advances in stability of linear systems with time-varying delays</title><source>Wiley Online Library Open Access</source><creator>Zhang, Xian-Ming ; Han, Qing-Long ; Seuret, Alexandre ; Gouaisbaut, Frédéric ; He, Yong</creator><creatorcontrib>Zhang, Xian-Ming ; Han, Qing-Long ; Seuret, Alexandre ; Gouaisbaut, Frédéric ; He, Yong</creatorcontrib><description>This study provides an overview and in-depth analysis of recent advances in stability of linear systems with time-varying delays. First, recent developments of a delay convex analysis approach, a reciprocally convex approach and the construction of Lyapunov–Krasovskii functionals are reviewed insightfully. Second, in-depth analysis of the Bessel–Legendre inequality and some affine integral inequalities is made, and recent stability results are also summarised, including stability criteria for three cases of a time-varying delay, where information on the bounds of the time-varying delay and its derivative is totally known, partly known and completely unknown, respectively. Third, a number of stability criteria are developed for the above three cases of the time-varying delay by employing canonical Bessel–Legendre inequalities, together with augmented Lyapunov–Krasovskii functionals. It is shown through numerical examples that these stability criteria outperform some existing results. Finally, several challenging issues are pointed out to direct the near future research.</description><identifier>ISSN: 1751-8644</identifier><identifier>ISSN: 1751-8652</identifier><identifier>EISSN: 1751-8652</identifier><identifier>DOI: 10.1049/iet-cta.2018.5188</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>augmented Lyapunov‐Krasovskii functionals ; Automatic ; canonical Bessel–Legendre inequalities ; delay convex analysis approach ; delay systems ; delays ; Engineering Sciences ; linear systems ; Lyapunov methods ; reciprocally convex approach ; Review Article ; stability criteria ; time‐varying delays ; time‐varying systems</subject><ispartof>IET control theory &amp; applications, 2019-01, Vol.13 (1), p.1-16</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Authors. IET Control Theory &amp; Applications published by John Wiley &amp; Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793</citedby><cites>FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793</cites><orcidid>0000-0002-7207-0716 ; 0000-0003-0691-5386 ; 0000-0002-4263-7195 ; 0000-0003-1434-7614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-cta.2018.5188$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-cta.2018.5188$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cta.2018.5188$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://laas.hal.science/hal-01920425$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xian-Ming</creatorcontrib><creatorcontrib>Han, Qing-Long</creatorcontrib><creatorcontrib>Seuret, Alexandre</creatorcontrib><creatorcontrib>Gouaisbaut, Frédéric</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><title>Overview of recent advances in stability of linear systems with time-varying delays</title><title>IET control theory &amp; applications</title><description>This study provides an overview and in-depth analysis of recent advances in stability of linear systems with time-varying delays. First, recent developments of a delay convex analysis approach, a reciprocally convex approach and the construction of Lyapunov–Krasovskii functionals are reviewed insightfully. Second, in-depth analysis of the Bessel–Legendre inequality and some affine integral inequalities is made, and recent stability results are also summarised, including stability criteria for three cases of a time-varying delay, where information on the bounds of the time-varying delay and its derivative is totally known, partly known and completely unknown, respectively. Third, a number of stability criteria are developed for the above three cases of the time-varying delay by employing canonical Bessel–Legendre inequalities, together with augmented Lyapunov–Krasovskii functionals. It is shown through numerical examples that these stability criteria outperform some existing results. Finally, several challenging issues are pointed out to direct the near future research.</description><subject>augmented Lyapunov‐Krasovskii functionals</subject><subject>Automatic</subject><subject>canonical Bessel–Legendre inequalities</subject><subject>delay convex analysis approach</subject><subject>delay systems</subject><subject>delays</subject><subject>Engineering Sciences</subject><subject>linear systems</subject><subject>Lyapunov methods</subject><subject>reciprocally convex approach</subject><subject>Review Article</subject><subject>stability criteria</subject><subject>time‐varying delays</subject><subject>time‐varying systems</subject><issn>1751-8644</issn><issn>1751-8652</issn><issn>1751-8652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAURS0EEqXwAWxeGVL8EttJxqoCilSpA2W2XOeFukoTZJtU-XscBTHCZOv5Hr-rQ8g9sAUwXj5aDIkJepEyKBYCiuKCzCAXkBRSpJe_d86vyY33R8aEkFzMyNu2R9dbPNOupg4NtoHqqtetQU9tS33Qe9vYMIzvjW1RO-oHH_Dk6dmGAw32hEmv3WDbD1phowd_S65q3Xi8-znn5P35abdaJ5vty-tquUkMZ0Vsk-EeZF4BGFEbXXFdIKKQgHkWxwxynZY5yJJnjMt9kQod-0tZG6ilzMtsTh6mfw-6UZ_OnmIL1Wmr1suNGmcMypTxVPQQszBljeu8d1j_AsDUaFBFgyoaVKNBNRqMTD4xZ9vg8D-gVrt1yhgbtyUTOWaO3Zdro4c_Nn0D_8iFNA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zhang, Xian-Ming</creator><creator>Han, Qing-Long</creator><creator>Seuret, Alexandre</creator><creator>Gouaisbaut, Frédéric</creator><creator>He, Yong</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7207-0716</orcidid><orcidid>https://orcid.org/0000-0003-0691-5386</orcidid><orcidid>https://orcid.org/0000-0002-4263-7195</orcidid><orcidid>https://orcid.org/0000-0003-1434-7614</orcidid></search><sort><creationdate>20190101</creationdate><title>Overview of recent advances in stability of linear systems with time-varying delays</title><author>Zhang, Xian-Ming ; Han, Qing-Long ; Seuret, Alexandre ; Gouaisbaut, Frédéric ; He, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>augmented Lyapunov‐Krasovskii functionals</topic><topic>Automatic</topic><topic>canonical Bessel–Legendre inequalities</topic><topic>delay convex analysis approach</topic><topic>delay systems</topic><topic>delays</topic><topic>Engineering Sciences</topic><topic>linear systems</topic><topic>Lyapunov methods</topic><topic>reciprocally convex approach</topic><topic>Review Article</topic><topic>stability criteria</topic><topic>time‐varying delays</topic><topic>time‐varying systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xian-Ming</creatorcontrib><creatorcontrib>Han, Qing-Long</creatorcontrib><creatorcontrib>Seuret, Alexandre</creatorcontrib><creatorcontrib>Gouaisbaut, Frédéric</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IET control theory &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xian-Ming</au><au>Han, Qing-Long</au><au>Seuret, Alexandre</au><au>Gouaisbaut, Frédéric</au><au>He, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overview of recent advances in stability of linear systems with time-varying delays</atitle><jtitle>IET control theory &amp; applications</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>13</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1751-8644</issn><issn>1751-8652</issn><eissn>1751-8652</eissn><abstract>This study provides an overview and in-depth analysis of recent advances in stability of linear systems with time-varying delays. First, recent developments of a delay convex analysis approach, a reciprocally convex approach and the construction of Lyapunov–Krasovskii functionals are reviewed insightfully. Second, in-depth analysis of the Bessel–Legendre inequality and some affine integral inequalities is made, and recent stability results are also summarised, including stability criteria for three cases of a time-varying delay, where information on the bounds of the time-varying delay and its derivative is totally known, partly known and completely unknown, respectively. Third, a number of stability criteria are developed for the above three cases of the time-varying delay by employing canonical Bessel–Legendre inequalities, together with augmented Lyapunov–Krasovskii functionals. It is shown through numerical examples that these stability criteria outperform some existing results. Finally, several challenging issues are pointed out to direct the near future research.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-cta.2018.5188</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7207-0716</orcidid><orcidid>https://orcid.org/0000-0003-0691-5386</orcidid><orcidid>https://orcid.org/0000-0002-4263-7195</orcidid><orcidid>https://orcid.org/0000-0003-1434-7614</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8644
ispartof IET control theory & applications, 2019-01, Vol.13 (1), p.1-16
issn 1751-8644
1751-8652
1751-8652
language eng
recordid cdi_hal_primary_oai_HAL_hal_01920425v1
source Wiley Online Library Open Access
subjects augmented Lyapunov‐Krasovskii functionals
Automatic
canonical Bessel–Legendre inequalities
delay convex analysis approach
delay systems
delays
Engineering Sciences
linear systems
Lyapunov methods
reciprocally convex approach
Review Article
stability criteria
time‐varying delays
time‐varying systems
title Overview of recent advances in stability of linear systems with time-varying delays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overview%20of%20recent%20advances%20in%20stability%20of%20linear%20systems%20with%20time-varying%20delays&rft.jtitle=IET%20control%20theory%20&%20applications&rft.au=Zhang,%20Xian-Ming&rft.date=2019-01-01&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1751-8644&rft.eissn=1751-8652&rft_id=info:doi/10.1049/iet-cta.2018.5188&rft_dat=%3Cwiley_24P%3ECTH20001%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true