Loading…
Overview of recent advances in stability of linear systems with time-varying delays
This study provides an overview and in-depth analysis of recent advances in stability of linear systems with time-varying delays. First, recent developments of a delay convex analysis approach, a reciprocally convex approach and the construction of Lyapunov–Krasovskii functionals are reviewed insigh...
Saved in:
Published in: | IET control theory & applications 2019-01, Vol.13 (1), p.1-16 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793 |
---|---|
cites | cdi_FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 1 |
container_title | IET control theory & applications |
container_volume | 13 |
creator | Zhang, Xian-Ming Han, Qing-Long Seuret, Alexandre Gouaisbaut, Frédéric He, Yong |
description | This study provides an overview and in-depth analysis of recent advances in stability of linear systems with time-varying delays. First, recent developments of a delay convex analysis approach, a reciprocally convex approach and the construction of Lyapunov–Krasovskii functionals are reviewed insightfully. Second, in-depth analysis of the Bessel–Legendre inequality and some affine integral inequalities is made, and recent stability results are also summarised, including stability criteria for three cases of a time-varying delay, where information on the bounds of the time-varying delay and its derivative is totally known, partly known and completely unknown, respectively. Third, a number of stability criteria are developed for the above three cases of the time-varying delay by employing canonical Bessel–Legendre inequalities, together with augmented Lyapunov–Krasovskii functionals. It is shown through numerical examples that these stability criteria outperform some existing results. Finally, several challenging issues are pointed out to direct the near future research. |
doi_str_mv | 10.1049/iet-cta.2018.5188 |
format | article |
fullrecord | <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01920425v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CTH20001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqXwAWxeGVL8EttJxqoCilSpA2W2XOeFukoTZJtU-XscBTHCZOv5Hr-rQ8g9sAUwXj5aDIkJepEyKBYCiuKCzCAXkBRSpJe_d86vyY33R8aEkFzMyNu2R9dbPNOupg4NtoHqqtetQU9tS33Qe9vYMIzvjW1RO-oHH_Dk6dmGAw32hEmv3WDbD1phowd_S65q3Xi8-znn5P35abdaJ5vty-tquUkMZ0Vsk-EeZF4BGFEbXXFdIKKQgHkWxwxynZY5yJJnjMt9kQod-0tZG6ilzMtsTh6mfw-6UZ_OnmIL1Wmr1suNGmcMypTxVPQQszBljeu8d1j_AsDUaFBFgyoaVKNBNRqMTD4xZ9vg8D-gVrt1yhgbtyUTOWaO3Zdro4c_Nn0D_8iFNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Overview of recent advances in stability of linear systems with time-varying delays</title><source>Wiley Online Library Open Access</source><creator>Zhang, Xian-Ming ; Han, Qing-Long ; Seuret, Alexandre ; Gouaisbaut, Frédéric ; He, Yong</creator><creatorcontrib>Zhang, Xian-Ming ; Han, Qing-Long ; Seuret, Alexandre ; Gouaisbaut, Frédéric ; He, Yong</creatorcontrib><description>This study provides an overview and in-depth analysis of recent advances in stability of linear systems with time-varying delays. First, recent developments of a delay convex analysis approach, a reciprocally convex approach and the construction of Lyapunov–Krasovskii functionals are reviewed insightfully. Second, in-depth analysis of the Bessel–Legendre inequality and some affine integral inequalities is made, and recent stability results are also summarised, including stability criteria for three cases of a time-varying delay, where information on the bounds of the time-varying delay and its derivative is totally known, partly known and completely unknown, respectively. Third, a number of stability criteria are developed for the above three cases of the time-varying delay by employing canonical Bessel–Legendre inequalities, together with augmented Lyapunov–Krasovskii functionals. It is shown through numerical examples that these stability criteria outperform some existing results. Finally, several challenging issues are pointed out to direct the near future research.</description><identifier>ISSN: 1751-8644</identifier><identifier>ISSN: 1751-8652</identifier><identifier>EISSN: 1751-8652</identifier><identifier>DOI: 10.1049/iet-cta.2018.5188</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>augmented Lyapunov‐Krasovskii functionals ; Automatic ; canonical Bessel–Legendre inequalities ; delay convex analysis approach ; delay systems ; delays ; Engineering Sciences ; linear systems ; Lyapunov methods ; reciprocally convex approach ; Review Article ; stability criteria ; time‐varying delays ; time‐varying systems</subject><ispartof>IET control theory & applications, 2019-01, Vol.13 (1), p.1-16</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793</citedby><cites>FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793</cites><orcidid>0000-0002-7207-0716 ; 0000-0003-0691-5386 ; 0000-0002-4263-7195 ; 0000-0003-1434-7614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-cta.2018.5188$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-cta.2018.5188$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,9755,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cta.2018.5188$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://laas.hal.science/hal-01920425$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xian-Ming</creatorcontrib><creatorcontrib>Han, Qing-Long</creatorcontrib><creatorcontrib>Seuret, Alexandre</creatorcontrib><creatorcontrib>Gouaisbaut, Frédéric</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><title>Overview of recent advances in stability of linear systems with time-varying delays</title><title>IET control theory & applications</title><description>This study provides an overview and in-depth analysis of recent advances in stability of linear systems with time-varying delays. First, recent developments of a delay convex analysis approach, a reciprocally convex approach and the construction of Lyapunov–Krasovskii functionals are reviewed insightfully. Second, in-depth analysis of the Bessel–Legendre inequality and some affine integral inequalities is made, and recent stability results are also summarised, including stability criteria for three cases of a time-varying delay, where information on the bounds of the time-varying delay and its derivative is totally known, partly known and completely unknown, respectively. Third, a number of stability criteria are developed for the above three cases of the time-varying delay by employing canonical Bessel–Legendre inequalities, together with augmented Lyapunov–Krasovskii functionals. It is shown through numerical examples that these stability criteria outperform some existing results. Finally, several challenging issues are pointed out to direct the near future research.</description><subject>augmented Lyapunov‐Krasovskii functionals</subject><subject>Automatic</subject><subject>canonical Bessel–Legendre inequalities</subject><subject>delay convex analysis approach</subject><subject>delay systems</subject><subject>delays</subject><subject>Engineering Sciences</subject><subject>linear systems</subject><subject>Lyapunov methods</subject><subject>reciprocally convex approach</subject><subject>Review Article</subject><subject>stability criteria</subject><subject>time‐varying delays</subject><subject>time‐varying systems</subject><issn>1751-8644</issn><issn>1751-8652</issn><issn>1751-8652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAURS0EEqXwAWxeGVL8EttJxqoCilSpA2W2XOeFukoTZJtU-XscBTHCZOv5Hr-rQ8g9sAUwXj5aDIkJepEyKBYCiuKCzCAXkBRSpJe_d86vyY33R8aEkFzMyNu2R9dbPNOupg4NtoHqqtetQU9tS33Qe9vYMIzvjW1RO-oHH_Dk6dmGAw32hEmv3WDbD1phowd_S65q3Xi8-znn5P35abdaJ5vty-tquUkMZ0Vsk-EeZF4BGFEbXXFdIKKQgHkWxwxynZY5yJJnjMt9kQod-0tZG6ilzMtsTh6mfw-6UZ_OnmIL1Wmr1suNGmcMypTxVPQQszBljeu8d1j_AsDUaFBFgyoaVKNBNRqMTD4xZ9vg8D-gVrt1yhgbtyUTOWaO3Zdro4c_Nn0D_8iFNA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Zhang, Xian-Ming</creator><creator>Han, Qing-Long</creator><creator>Seuret, Alexandre</creator><creator>Gouaisbaut, Frédéric</creator><creator>He, Yong</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7207-0716</orcidid><orcidid>https://orcid.org/0000-0003-0691-5386</orcidid><orcidid>https://orcid.org/0000-0002-4263-7195</orcidid><orcidid>https://orcid.org/0000-0003-1434-7614</orcidid></search><sort><creationdate>20190101</creationdate><title>Overview of recent advances in stability of linear systems with time-varying delays</title><author>Zhang, Xian-Ming ; Han, Qing-Long ; Seuret, Alexandre ; Gouaisbaut, Frédéric ; He, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>augmented Lyapunov‐Krasovskii functionals</topic><topic>Automatic</topic><topic>canonical Bessel–Legendre inequalities</topic><topic>delay convex analysis approach</topic><topic>delay systems</topic><topic>delays</topic><topic>Engineering Sciences</topic><topic>linear systems</topic><topic>Lyapunov methods</topic><topic>reciprocally convex approach</topic><topic>Review Article</topic><topic>stability criteria</topic><topic>time‐varying delays</topic><topic>time‐varying systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xian-Ming</creatorcontrib><creatorcontrib>Han, Qing-Long</creatorcontrib><creatorcontrib>Seuret, Alexandre</creatorcontrib><creatorcontrib>Gouaisbaut, Frédéric</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IET control theory & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xian-Ming</au><au>Han, Qing-Long</au><au>Seuret, Alexandre</au><au>Gouaisbaut, Frédéric</au><au>He, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overview of recent advances in stability of linear systems with time-varying delays</atitle><jtitle>IET control theory & applications</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>13</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1751-8644</issn><issn>1751-8652</issn><eissn>1751-8652</eissn><abstract>This study provides an overview and in-depth analysis of recent advances in stability of linear systems with time-varying delays. First, recent developments of a delay convex analysis approach, a reciprocally convex approach and the construction of Lyapunov–Krasovskii functionals are reviewed insightfully. Second, in-depth analysis of the Bessel–Legendre inequality and some affine integral inequalities is made, and recent stability results are also summarised, including stability criteria for three cases of a time-varying delay, where information on the bounds of the time-varying delay and its derivative is totally known, partly known and completely unknown, respectively. Third, a number of stability criteria are developed for the above three cases of the time-varying delay by employing canonical Bessel–Legendre inequalities, together with augmented Lyapunov–Krasovskii functionals. It is shown through numerical examples that these stability criteria outperform some existing results. Finally, several challenging issues are pointed out to direct the near future research.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-cta.2018.5188</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7207-0716</orcidid><orcidid>https://orcid.org/0000-0003-0691-5386</orcidid><orcidid>https://orcid.org/0000-0002-4263-7195</orcidid><orcidid>https://orcid.org/0000-0003-1434-7614</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-8644 |
ispartof | IET control theory & applications, 2019-01, Vol.13 (1), p.1-16 |
issn | 1751-8644 1751-8652 1751-8652 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01920425v1 |
source | Wiley Online Library Open Access |
subjects | augmented Lyapunov‐Krasovskii functionals Automatic canonical Bessel–Legendre inequalities delay convex analysis approach delay systems delays Engineering Sciences linear systems Lyapunov methods reciprocally convex approach Review Article stability criteria time‐varying delays time‐varying systems |
title | Overview of recent advances in stability of linear systems with time-varying delays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overview%20of%20recent%20advances%20in%20stability%20of%20linear%20systems%20with%20time-varying%20delays&rft.jtitle=IET%20control%20theory%20&%20applications&rft.au=Zhang,%20Xian-Ming&rft.date=2019-01-01&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1751-8644&rft.eissn=1751-8652&rft_id=info:doi/10.1049/iet-cta.2018.5188&rft_dat=%3Cwiley_24P%3ECTH20001%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4081-83eb167d11c5fcad4a8eee561e7367d017a29716943046b825a64466fc1f66793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |