Loading…

Comparison of thermal stress computations in Czochralski and Kyropoulos growth of sapphire crystals

•3D numerical computations of stress in sapphire crystals grown by Cz and Ky methods are performed.•Kyropoulos grown ingots exhibit high thermal stress only in a thin region at the crystal periphery.•Simulations of Czochralski technique show high stress in almost whole volume of the crystal.•Numeric...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 2018-10, Vol.499, p.77-84
Main Authors: Stelian, Carmen, Sen, Gourav, Duffar, Thierry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-eb5908bdcc73af1201817b9cc0e832cfb3f9490a14e943643656258ffc50e5ff3
cites cdi_FETCH-LOGICAL-c374t-eb5908bdcc73af1201817b9cc0e832cfb3f9490a14e943643656258ffc50e5ff3
container_end_page 84
container_issue
container_start_page 77
container_title Journal of crystal growth
container_volume 499
creator Stelian, Carmen
Sen, Gourav
Duffar, Thierry
description •3D numerical computations of stress in sapphire crystals grown by Cz and Ky methods are performed.•Kyropoulos grown ingots exhibit high thermal stress only in a thin region at the crystal periphery.•Simulations of Czochralski technique show high stress in almost whole volume of the crystal.•Numerical results are in agreement with experimental observations about dislocation densities.•Computations with temperature dependent elastic constants provide better results. Thermal stress computations during sapphire growth are compared between a resistive Czochralski furnace and a Kyropoulos inductive furnace. 2D – axisymmetric global simulations are performed to compute the thermal field in the furnace and the convection in the melt. Temperatures carried out from global modeling at a given stage of the growth process, are used for thermal stress computations in the crystal. Three-dimensional stress analysis, which takes into account the anisotropic elastic constants of sapphire, shows nearly axisymmetric von Mises stress distribution in the crystal. It is shown that applying 2D – axisymmetric modeling of thermal stress may result in significant errors. Computations performed for a crystal of 10 cm in diameter grown in a Kyropoulos furnace show only a thin region of 2–3 mm with high thermal stress located at the crystal periphery. The model predicts very low thermal stresses in the central part of the crystal. Simulations of an ingot grown by Czochralski technique, show higher thermal stresses in almost the whole volume of the crystal. Numerical computations are in agreement with our previous measurements of dislocation density in sapphire crystals grown by the Kyropoulos method. The present numerical results can explain the experimental observations showing that sapphire crystals grown by Czochralski technique have a much higher dislocation density than Kyropoulos grown ingots.
doi_str_mv 10.1016/j.jcrysgro.2018.08.002
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01927301v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024818303506</els_id><sourcerecordid>2115241839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-eb5908bdcc73af1201817b9cc0e832cfb3f9490a14e943643656258ffc50e5ff3</originalsourceid><addsrcrecordid>eNqFUE1PAyEUJEYTa_UvGBJPHnZ9wH7ebBq1xiZe9EwoBZd1u6xAa-qvl03Vq8mE9wIzw3uD0CWBlAApbtq0lW7v35xNKZAqhQigR2hCqpIleeyP0SSeNAGaVafozPsWICoJTJCc280gnPG2x1bj0Ci3ER32wSnvsYyP2yCCsb3HpsfzLysbJzr_brDo1_hp7-xgt531OH7_GZrRw4thaIxTeJwqRPI5OtGxqIufOkWv93cv80WyfH54nM-WiWRlFhK1ymuoVmspSyY0GXch5aqWElTFqNQrpuusBkEyVWesiMgLmldayxxUrjWbouuDbyM6PjizEW7PrTB8MVvy8Q5ITUsGZEci9-rAHZz92CofeGu3ro_jcUpITjNSsTqyigNLOuu9U_rPlgAfw-ct_w2fjwNziAAahbcHoYr77oxy3EujeqnWMRgZ-Nqa_yy-AazEklE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115241839</pqid></control><display><type>article</type><title>Comparison of thermal stress computations in Czochralski and Kyropoulos growth of sapphire crystals</title><source>Elsevier</source><creator>Stelian, Carmen ; Sen, Gourav ; Duffar, Thierry</creator><creatorcontrib>Stelian, Carmen ; Sen, Gourav ; Duffar, Thierry</creatorcontrib><description>•3D numerical computations of stress in sapphire crystals grown by Cz and Ky methods are performed.•Kyropoulos grown ingots exhibit high thermal stress only in a thin region at the crystal periphery.•Simulations of Czochralski technique show high stress in almost whole volume of the crystal.•Numerical results are in agreement with experimental observations about dislocation densities.•Computations with temperature dependent elastic constants provide better results. Thermal stress computations during sapphire growth are compared between a resistive Czochralski furnace and a Kyropoulos inductive furnace. 2D – axisymmetric global simulations are performed to compute the thermal field in the furnace and the convection in the melt. Temperatures carried out from global modeling at a given stage of the growth process, are used for thermal stress computations in the crystal. Three-dimensional stress analysis, which takes into account the anisotropic elastic constants of sapphire, shows nearly axisymmetric von Mises stress distribution in the crystal. It is shown that applying 2D – axisymmetric modeling of thermal stress may result in significant errors. Computations performed for a crystal of 10 cm in diameter grown in a Kyropoulos furnace show only a thin region of 2–3 mm with high thermal stress located at the crystal periphery. The model predicts very low thermal stresses in the central part of the crystal. Simulations of an ingot grown by Czochralski technique, show higher thermal stresses in almost the whole volume of the crystal. Numerical computations are in agreement with our previous measurements of dislocation density in sapphire crystals grown by the Kyropoulos method. The present numerical results can explain the experimental observations showing that sapphire crystals grown by Czochralski technique have a much higher dislocation density than Kyropoulos grown ingots.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2018.08.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Computer simulation ; A1. Stresses ; A2. Kyropoulos method ; Asymmetry ; B1. Sapphire ; Comparative analysis ; Computer simulation ; Convection furnaces ; Crystal growth ; Crystals ; Czochralski method ; Dislocation density ; Elastic anisotropy ; Elastic properties ; Engineering Sciences ; Ingots ; Materials ; Mathematical models ; Sapphire ; Simulation ; Stress analysis ; Stress concentration ; Stress distribution ; Stress state ; Thermal stress ; Three dimensional analysis ; Two dimensional models</subject><ispartof>Journal of crystal growth, 2018-10, Vol.499, p.77-84</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 1, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-eb5908bdcc73af1201817b9cc0e832cfb3f9490a14e943643656258ffc50e5ff3</citedby><cites>FETCH-LOGICAL-c374t-eb5908bdcc73af1201817b9cc0e832cfb3f9490a14e943643656258ffc50e5ff3</cites><orcidid>0000-0002-8803-6790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01927301$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Stelian, Carmen</creatorcontrib><creatorcontrib>Sen, Gourav</creatorcontrib><creatorcontrib>Duffar, Thierry</creatorcontrib><title>Comparison of thermal stress computations in Czochralski and Kyropoulos growth of sapphire crystals</title><title>Journal of crystal growth</title><description>•3D numerical computations of stress in sapphire crystals grown by Cz and Ky methods are performed.•Kyropoulos grown ingots exhibit high thermal stress only in a thin region at the crystal periphery.•Simulations of Czochralski technique show high stress in almost whole volume of the crystal.•Numerical results are in agreement with experimental observations about dislocation densities.•Computations with temperature dependent elastic constants provide better results. Thermal stress computations during sapphire growth are compared between a resistive Czochralski furnace and a Kyropoulos inductive furnace. 2D – axisymmetric global simulations are performed to compute the thermal field in the furnace and the convection in the melt. Temperatures carried out from global modeling at a given stage of the growth process, are used for thermal stress computations in the crystal. Three-dimensional stress analysis, which takes into account the anisotropic elastic constants of sapphire, shows nearly axisymmetric von Mises stress distribution in the crystal. It is shown that applying 2D – axisymmetric modeling of thermal stress may result in significant errors. Computations performed for a crystal of 10 cm in diameter grown in a Kyropoulos furnace show only a thin region of 2–3 mm with high thermal stress located at the crystal periphery. The model predicts very low thermal stresses in the central part of the crystal. Simulations of an ingot grown by Czochralski technique, show higher thermal stresses in almost the whole volume of the crystal. Numerical computations are in agreement with our previous measurements of dislocation density in sapphire crystals grown by the Kyropoulos method. The present numerical results can explain the experimental observations showing that sapphire crystals grown by Czochralski technique have a much higher dislocation density than Kyropoulos grown ingots.</description><subject>A1. Computer simulation</subject><subject>A1. Stresses</subject><subject>A2. Kyropoulos method</subject><subject>Asymmetry</subject><subject>B1. Sapphire</subject><subject>Comparative analysis</subject><subject>Computer simulation</subject><subject>Convection furnaces</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>Czochralski method</subject><subject>Dislocation density</subject><subject>Elastic anisotropy</subject><subject>Elastic properties</subject><subject>Engineering Sciences</subject><subject>Ingots</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Sapphire</subject><subject>Simulation</subject><subject>Stress analysis</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Stress state</subject><subject>Thermal stress</subject><subject>Three dimensional analysis</subject><subject>Two dimensional models</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1PAyEUJEYTa_UvGBJPHnZ9wH7ebBq1xiZe9EwoBZd1u6xAa-qvl03Vq8mE9wIzw3uD0CWBlAApbtq0lW7v35xNKZAqhQigR2hCqpIleeyP0SSeNAGaVafozPsWICoJTJCc280gnPG2x1bj0Ci3ER32wSnvsYyP2yCCsb3HpsfzLysbJzr_brDo1_hp7-xgt531OH7_GZrRw4thaIxTeJwqRPI5OtGxqIufOkWv93cv80WyfH54nM-WiWRlFhK1ymuoVmspSyY0GXch5aqWElTFqNQrpuusBkEyVWesiMgLmldayxxUrjWbouuDbyM6PjizEW7PrTB8MVvy8Q5ITUsGZEci9-rAHZz92CofeGu3ro_jcUpITjNSsTqyigNLOuu9U_rPlgAfw-ct_w2fjwNziAAahbcHoYr77oxy3EujeqnWMRgZ-Nqa_yy-AazEklE</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Stelian, Carmen</creator><creator>Sen, Gourav</creator><creator>Duffar, Thierry</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8803-6790</orcidid></search><sort><creationdate>20181001</creationdate><title>Comparison of thermal stress computations in Czochralski and Kyropoulos growth of sapphire crystals</title><author>Stelian, Carmen ; Sen, Gourav ; Duffar, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-eb5908bdcc73af1201817b9cc0e832cfb3f9490a14e943643656258ffc50e5ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A1. Computer simulation</topic><topic>A1. Stresses</topic><topic>A2. Kyropoulos method</topic><topic>Asymmetry</topic><topic>B1. Sapphire</topic><topic>Comparative analysis</topic><topic>Computer simulation</topic><topic>Convection furnaces</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>Czochralski method</topic><topic>Dislocation density</topic><topic>Elastic anisotropy</topic><topic>Elastic properties</topic><topic>Engineering Sciences</topic><topic>Ingots</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Sapphire</topic><topic>Simulation</topic><topic>Stress analysis</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Stress state</topic><topic>Thermal stress</topic><topic>Three dimensional analysis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stelian, Carmen</creatorcontrib><creatorcontrib>Sen, Gourav</creatorcontrib><creatorcontrib>Duffar, Thierry</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stelian, Carmen</au><au>Sen, Gourav</au><au>Duffar, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of thermal stress computations in Czochralski and Kyropoulos growth of sapphire crystals</atitle><jtitle>Journal of crystal growth</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>499</volume><spage>77</spage><epage>84</epage><pages>77-84</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•3D numerical computations of stress in sapphire crystals grown by Cz and Ky methods are performed.•Kyropoulos grown ingots exhibit high thermal stress only in a thin region at the crystal periphery.•Simulations of Czochralski technique show high stress in almost whole volume of the crystal.•Numerical results are in agreement with experimental observations about dislocation densities.•Computations with temperature dependent elastic constants provide better results. Thermal stress computations during sapphire growth are compared between a resistive Czochralski furnace and a Kyropoulos inductive furnace. 2D – axisymmetric global simulations are performed to compute the thermal field in the furnace and the convection in the melt. Temperatures carried out from global modeling at a given stage of the growth process, are used for thermal stress computations in the crystal. Three-dimensional stress analysis, which takes into account the anisotropic elastic constants of sapphire, shows nearly axisymmetric von Mises stress distribution in the crystal. It is shown that applying 2D – axisymmetric modeling of thermal stress may result in significant errors. Computations performed for a crystal of 10 cm in diameter grown in a Kyropoulos furnace show only a thin region of 2–3 mm with high thermal stress located at the crystal periphery. The model predicts very low thermal stresses in the central part of the crystal. Simulations of an ingot grown by Czochralski technique, show higher thermal stresses in almost the whole volume of the crystal. Numerical computations are in agreement with our previous measurements of dislocation density in sapphire crystals grown by the Kyropoulos method. The present numerical results can explain the experimental observations showing that sapphire crystals grown by Czochralski technique have a much higher dislocation density than Kyropoulos grown ingots.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2018.08.002</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8803-6790</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2018-10, Vol.499, p.77-84
issn 0022-0248
1873-5002
language eng
recordid cdi_hal_primary_oai_HAL_hal_01927301v1
source Elsevier
subjects A1. Computer simulation
A1. Stresses
A2. Kyropoulos method
Asymmetry
B1. Sapphire
Comparative analysis
Computer simulation
Convection furnaces
Crystal growth
Crystals
Czochralski method
Dislocation density
Elastic anisotropy
Elastic properties
Engineering Sciences
Ingots
Materials
Mathematical models
Sapphire
Simulation
Stress analysis
Stress concentration
Stress distribution
Stress state
Thermal stress
Three dimensional analysis
Two dimensional models
title Comparison of thermal stress computations in Czochralski and Kyropoulos growth of sapphire crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20thermal%20stress%20computations%20in%20Czochralski%20and%20Kyropoulos%20growth%20of%20sapphire%20crystals&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Stelian,%20Carmen&rft.date=2018-10-01&rft.volume=499&rft.spage=77&rft.epage=84&rft.pages=77-84&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2018.08.002&rft_dat=%3Cproquest_hal_p%3E2115241839%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-eb5908bdcc73af1201817b9cc0e832cfb3f9490a14e943643656258ffc50e5ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2115241839&rft_id=info:pmid/&rfr_iscdi=true