Loading…

High thermoelectric and electronic performance in graphene nanoribbons by isotope and vacancy engineering

We study the effects of isotope doping and vacancies on the electronic, phononic and thermoelectric properties of graphene nano-ribbons by means of atomistic simulation based on semi-empirical Tight Binding and Force Constant models combined with the Non-Equilibrium Green’s Function formalism of tra...

Full description

Saved in:
Bibliographic Details
Published in:Materials today : proceedings 2018, Vol.5 (4), p.10393-10400
Main Authors: Tran, Van-Truong, Saint-Martin, Jérôme, Dollfus, Philippe, Volz, Sebastian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-4d7a0101fedefc9042248efe341920ac5f529076b279ebafc5c271cd310df7d23
cites cdi_FETCH-LOGICAL-c403t-4d7a0101fedefc9042248efe341920ac5f529076b279ebafc5c271cd310df7d23
container_end_page 10400
container_issue 4
container_start_page 10393
container_title Materials today : proceedings
container_volume 5
creator Tran, Van-Truong
Saint-Martin, Jérôme
Dollfus, Philippe
Volz, Sebastian
description We study the effects of isotope doping and vacancies on the electronic, phononic and thermoelectric properties of graphene nano-ribbons by means of atomistic simulation based on semi-empirical Tight Binding and Force Constant models combined with the Non-Equilibrium Green’s Function formalism of transport. We demonstrate that from the phononic perspective, the impact of isotope doping on transmission is very dependent on the phonon frequency and particularly strong at high frequency, while vacancies wield their influence on the whole frequency range. From the electronic point of view, if placed at dimer line positions m = 3i + 1, 3i + 2, vacancies induce a strong reduction of the electrical conductance while vacancies at positions m = 3i act as isotopes, i.e. they are transparent to electrons and do not affect the electronic properties. The thermoelectric study is conducted by combining both electronic and phononic properties. It demonstrates the possibility of a remarkable enhancement of figure of merit ZT. In the presence of both types of defects, ZT can be enhanced significantly from 0.26 in pristine ribbons to values larger than 2.5 for ribbons of width M = 5.
doi_str_mv 10.1016/j.matpr.2017.12.287
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01927617v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214785317332765</els_id><sourcerecordid>oai_HAL_hal_01927617v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-4d7a0101fedefc9042248efe341920ac5f529076b279ebafc5c271cd310df7d23</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWLRP4CZbFzMmmUtmFi5KUSsU3Og6ZJKTmZROMiRDoW9v2oq4cnUu_N-B8yH0QElOCa2fdvko5ynkjFCeU5azhl-hBWO0zHhTFdd_-lu0jHFHCKFVTRpaL5Dd2H7A8wBh9LAHNQersHQaXwbv0jhBMD6M0inA1uE-yGkAB9hJ54PtOu8i7o7YRj_7Cc70QaoUP2JwvXUAwbr-Ht0YuY-w_Kl36Ov15XO9ybYfb-_r1TZTJSnmrNRckvSXAQ1GtaRkrGzAQFHSlhGpKlOxlvC6Y7yFThpVKcap0gUl2nDNijv0eLk7yL2Ygh1lOAovrdistuK0I-kQryk_0JQtLlkVfIwBzC9AiTjJFTtxlitOcgVlIslN1POFgvTGwUIQUVlIdrQNSZrQ3v7LfwMlRoWj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High thermoelectric and electronic performance in graphene nanoribbons by isotope and vacancy engineering</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Tran, Van-Truong ; Saint-Martin, Jérôme ; Dollfus, Philippe ; Volz, Sebastian</creator><creatorcontrib>Tran, Van-Truong ; Saint-Martin, Jérôme ; Dollfus, Philippe ; Volz, Sebastian</creatorcontrib><description>We study the effects of isotope doping and vacancies on the electronic, phononic and thermoelectric properties of graphene nano-ribbons by means of atomistic simulation based on semi-empirical Tight Binding and Force Constant models combined with the Non-Equilibrium Green’s Function formalism of transport. We demonstrate that from the phononic perspective, the impact of isotope doping on transmission is very dependent on the phonon frequency and particularly strong at high frequency, while vacancies wield their influence on the whole frequency range. From the electronic point of view, if placed at dimer line positions m = 3i + 1, 3i + 2, vacancies induce a strong reduction of the electrical conductance while vacancies at positions m = 3i act as isotopes, i.e. they are transparent to electrons and do not affect the electronic properties. The thermoelectric study is conducted by combining both electronic and phononic properties. It demonstrates the possibility of a remarkable enhancement of figure of merit ZT. In the presence of both types of defects, ZT can be enhanced significantly from 0.26 in pristine ribbons to values larger than 2.5 for ribbons of width M = 5.</description><identifier>ISSN: 2214-7853</identifier><identifier>EISSN: 2214-7853</identifier><identifier>DOI: 10.1016/j.matpr.2017.12.287</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Condensed Matter ; Electronic ; Engineering Sciences ; Figure of merit ; Graphene ribbon ; Isotope ; Materials Science ; Mechanics ; Micro and nanotechnologies ; Microelectronics ; Phononic ; Physics ; Thermics ; Thermoelectric ; Vacancy</subject><ispartof>Materials today : proceedings, 2018, Vol.5 (4), p.10393-10400</ispartof><rights>2017 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-4d7a0101fedefc9042248efe341920ac5f529076b279ebafc5c271cd310df7d23</citedby><cites>FETCH-LOGICAL-c403t-4d7a0101fedefc9042248efe341920ac5f529076b279ebafc5c271cd310df7d23</cites><orcidid>0000-0002-4613-7147 ; 0000-0002-6540-8416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01927617$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, Van-Truong</creatorcontrib><creatorcontrib>Saint-Martin, Jérôme</creatorcontrib><creatorcontrib>Dollfus, Philippe</creatorcontrib><creatorcontrib>Volz, Sebastian</creatorcontrib><title>High thermoelectric and electronic performance in graphene nanoribbons by isotope and vacancy engineering</title><title>Materials today : proceedings</title><description>We study the effects of isotope doping and vacancies on the electronic, phononic and thermoelectric properties of graphene nano-ribbons by means of atomistic simulation based on semi-empirical Tight Binding and Force Constant models combined with the Non-Equilibrium Green’s Function formalism of transport. We demonstrate that from the phononic perspective, the impact of isotope doping on transmission is very dependent on the phonon frequency and particularly strong at high frequency, while vacancies wield their influence on the whole frequency range. From the electronic point of view, if placed at dimer line positions m = 3i + 1, 3i + 2, vacancies induce a strong reduction of the electrical conductance while vacancies at positions m = 3i act as isotopes, i.e. they are transparent to electrons and do not affect the electronic properties. The thermoelectric study is conducted by combining both electronic and phononic properties. It demonstrates the possibility of a remarkable enhancement of figure of merit ZT. In the presence of both types of defects, ZT can be enhanced significantly from 0.26 in pristine ribbons to values larger than 2.5 for ribbons of width M = 5.</description><subject>Condensed Matter</subject><subject>Electronic</subject><subject>Engineering Sciences</subject><subject>Figure of merit</subject><subject>Graphene ribbon</subject><subject>Isotope</subject><subject>Materials Science</subject><subject>Mechanics</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Phononic</subject><subject>Physics</subject><subject>Thermics</subject><subject>Thermoelectric</subject><subject>Vacancy</subject><issn>2214-7853</issn><issn>2214-7853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWLRP4CZbFzMmmUtmFi5KUSsU3Og6ZJKTmZROMiRDoW9v2oq4cnUu_N-B8yH0QElOCa2fdvko5ynkjFCeU5azhl-hBWO0zHhTFdd_-lu0jHFHCKFVTRpaL5Dd2H7A8wBh9LAHNQersHQaXwbv0jhBMD6M0inA1uE-yGkAB9hJ54PtOu8i7o7YRj_7Cc70QaoUP2JwvXUAwbr-Ht0YuY-w_Kl36Ov15XO9ybYfb-_r1TZTJSnmrNRckvSXAQ1GtaRkrGzAQFHSlhGpKlOxlvC6Y7yFThpVKcap0gUl2nDNijv0eLk7yL2Ygh1lOAovrdistuK0I-kQryk_0JQtLlkVfIwBzC9AiTjJFTtxlitOcgVlIslN1POFgvTGwUIQUVlIdrQNSZrQ3v7LfwMlRoWj</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Tran, Van-Truong</creator><creator>Saint-Martin, Jérôme</creator><creator>Dollfus, Philippe</creator><creator>Volz, Sebastian</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4613-7147</orcidid><orcidid>https://orcid.org/0000-0002-6540-8416</orcidid></search><sort><creationdate>2018</creationdate><title>High thermoelectric and electronic performance in graphene nanoribbons by isotope and vacancy engineering</title><author>Tran, Van-Truong ; Saint-Martin, Jérôme ; Dollfus, Philippe ; Volz, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-4d7a0101fedefc9042248efe341920ac5f529076b279ebafc5c271cd310df7d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Condensed Matter</topic><topic>Electronic</topic><topic>Engineering Sciences</topic><topic>Figure of merit</topic><topic>Graphene ribbon</topic><topic>Isotope</topic><topic>Materials Science</topic><topic>Mechanics</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Phononic</topic><topic>Physics</topic><topic>Thermics</topic><topic>Thermoelectric</topic><topic>Vacancy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Van-Truong</creatorcontrib><creatorcontrib>Saint-Martin, Jérôme</creatorcontrib><creatorcontrib>Dollfus, Philippe</creatorcontrib><creatorcontrib>Volz, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Materials today : proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Van-Truong</au><au>Saint-Martin, Jérôme</au><au>Dollfus, Philippe</au><au>Volz, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High thermoelectric and electronic performance in graphene nanoribbons by isotope and vacancy engineering</atitle><jtitle>Materials today : proceedings</jtitle><date>2018</date><risdate>2018</risdate><volume>5</volume><issue>4</issue><spage>10393</spage><epage>10400</epage><pages>10393-10400</pages><issn>2214-7853</issn><eissn>2214-7853</eissn><abstract>We study the effects of isotope doping and vacancies on the electronic, phononic and thermoelectric properties of graphene nano-ribbons by means of atomistic simulation based on semi-empirical Tight Binding and Force Constant models combined with the Non-Equilibrium Green’s Function formalism of transport. We demonstrate that from the phononic perspective, the impact of isotope doping on transmission is very dependent on the phonon frequency and particularly strong at high frequency, while vacancies wield their influence on the whole frequency range. From the electronic point of view, if placed at dimer line positions m = 3i + 1, 3i + 2, vacancies induce a strong reduction of the electrical conductance while vacancies at positions m = 3i act as isotopes, i.e. they are transparent to electrons and do not affect the electronic properties. The thermoelectric study is conducted by combining both electronic and phononic properties. It demonstrates the possibility of a remarkable enhancement of figure of merit ZT. In the presence of both types of defects, ZT can be enhanced significantly from 0.26 in pristine ribbons to values larger than 2.5 for ribbons of width M = 5.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.matpr.2017.12.287</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4613-7147</orcidid><orcidid>https://orcid.org/0000-0002-6540-8416</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2214-7853
ispartof Materials today : proceedings, 2018, Vol.5 (4), p.10393-10400
issn 2214-7853
2214-7853
language eng
recordid cdi_hal_primary_oai_HAL_hal_01927617v1
source ScienceDirect Freedom Collection 2022-2024
subjects Condensed Matter
Electronic
Engineering Sciences
Figure of merit
Graphene ribbon
Isotope
Materials Science
Mechanics
Micro and nanotechnologies
Microelectronics
Phononic
Physics
Thermics
Thermoelectric
Vacancy
title High thermoelectric and electronic performance in graphene nanoribbons by isotope and vacancy engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20thermoelectric%20and%20electronic%20performance%20in%20graphene%20nanoribbons%20by%20isotope%20and%20vacancy%20engineering&rft.jtitle=Materials%20today%20:%20proceedings&rft.au=Tran,%20Van-Truong&rft.date=2018&rft.volume=5&rft.issue=4&rft.spage=10393&rft.epage=10400&rft.pages=10393-10400&rft.issn=2214-7853&rft.eissn=2214-7853&rft_id=info:doi/10.1016/j.matpr.2017.12.287&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01927617v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-4d7a0101fedefc9042248efe341920ac5f529076b279ebafc5c271cd310df7d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true