Loading…

Synthesis Gas Purification

Fischer-Tropsch (FT) based B-XTL processes are attractive alternatives for future energy production. These processes aim at converting lignocellulosic biomass possibly in co-processing with petcoke, coal, or vacuum residues into synthetic biofuels. A gasification step converts the feed into a synthe...

Full description

Saved in:
Bibliographic Details
Published in:Oil & gas science and technology 2013-07, Vol.68 (4), p.707-723
Main Authors: Chiche, D., Diverchy, C., Lucquin, A.-C., Porcheron, F., Defoort, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fischer-Tropsch (FT) based B-XTL processes are attractive alternatives for future energy production. These processes aim at converting lignocellulosic biomass possibly in co-processing with petcoke, coal, or vacuum residues into synthetic biofuels. A gasification step converts the feed into a synthesis gas (CO and H2 mixture) , which undergoes the Fischer-Tropsch reaction after H2/CO ratio adjustment and CO2 removal. However synthesis gas also contains various impurities that must be removed in order to prevent Fischer-Tropsch catalyst poisoning. Due to the large feedstocks variety that can be processed, significant variations of the composition of the synthesis gas are expected. Especially, this affects the nature of the impurities that are present (element, speciation), as well as their relative contents. Moreover, due to high FT catalyst sensitivity, severe syngas specifications regarding its purity are required. For these reasons, synthesis gas purification constitutes a major challenge for the development of B-XTL processes. In this article, we focus on these major hurdles that have to be overcome. The different kinds of syngas impurities are presented. The influence of the nature of feedstocks, gasification technology and operating conditions on the type and content of impurities is discussed. Highlight is given on the fate of sulfur compounds, nitrogen compounds, halides, transition and heavy metals. Main synthesis gas purification technologies (based on adsorption, absorption, catalytic reactions, etc.) are finally described, as well as the related challenges. Les procédés de synthèse de biocarburants par voie Fischer-Tropsch (FT), voies B-XTL, représentent des alternatives prometteuses pour la production d’énergie. Ces procédés permettent la conversion en carburants de synthèse de biomasse lignocellulosique, éventuellement mise en oeuvre en mélange avec des charges fossiles telles que petcoke, charbons ou résidus sous vide. Pour ce faire, une étape de gazéification convertit la charge carbonée en un gaz de synthèse (mélange de CO et H2), lequel, après ajustement du ratio H2/CO et élimination du CO2, subit ensuite la réaction de FischerTropsch. Les gaz de synthèse contiennent cependant de nombreuses impuretés qui nécessitent d’être éliminées afin d’éviter l’empoisonnement des catalyseurs Fischer-Tropsch. En raison de la grande variété de charges pouvant être mises en oeuvre, la composition des gaz de synthèse est susceptible de subir d’importantes
ISSN:1294-4475
1953-8189
DOI:10.2516/ogst/2013175