Loading…

Evolution of flax cell wall ultrastructure and mechanical properties during the retting step

•The impact of field retting time was studied on six flax fibres samples.•AFM measurements revealed a significant increase of cell wall stiffness with retting.•XRD and NMR investigations showed an increase of cellulose crystallinity with retting.•NMR evidenced a compaction of inaccessible polymers f...

Full description

Saved in:
Bibliographic Details
Published in:Carbohydrate polymers 2019-02, Vol.206, p.48-56
Main Authors: Bourmaud, Alain, Siniscalco, David, Foucat, Loïc, Goudenhooft, Camille, Falourd, Xavier, Pontoire, Bruno, Arnould, Olivier, Beaugrand, Johnny, Baley, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-dfaca711b7df742cdf0c1275bfeb33f8daf0606518eeac735bc156776e942ab53
cites cdi_FETCH-LOGICAL-c483t-dfaca711b7df742cdf0c1275bfeb33f8daf0606518eeac735bc156776e942ab53
container_end_page 56
container_issue
container_start_page 48
container_title Carbohydrate polymers
container_volume 206
creator Bourmaud, Alain
Siniscalco, David
Foucat, Loïc
Goudenhooft, Camille
Falourd, Xavier
Pontoire, Bruno
Arnould, Olivier
Beaugrand, Johnny
Baley, Christophe
description •The impact of field retting time was studied on six flax fibres samples.•AFM measurements revealed a significant increase of cell wall stiffness with retting.•XRD and NMR investigations showed an increase of cellulose crystallinity with retting.•NMR evidenced a compaction of inaccessible polymers for most retted sample.•This densification can be a possible explanation of the indentation modulus increase. Flax retting is a major bioprocess in the cultivation and extraction cycle of flax fibres. The aim of the present study is to improve the understanding of the evolution of fibre properties and ultrastructure caused by this process at the plant cell wall scale. Initially, investigations of the mechanical performances of the flax cell walls by Atomic Force Microscopy (AFM) in Peak Force mode revealed a significant increase (+33%) in the cell wall indentation modulus with retting time. Two complementary structural studies are presented here, namely using X-Ray Diffraction (XRD) and solid state Nuclear Magnetic Resonance (NMR). An estimation of the cellulose crystallinity index by XRD measurements, confirmed by NMR, shows an increase of 8% in crystallinity with retting mainly due to the disappearance of amorphous polymer. In addition, NMR investigations show a compaction of inaccessible cell wall polymers, combined with an increase in the relaxation times of the C4 carbon. This densification provides a structural explanation for the observed improvement in mechanical performance of the secondary wall of flax fibres during the field retting process.
doi_str_mv 10.1016/j.carbpol.2018.10.065
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01937778v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861718312542</els_id><sourcerecordid>2157664514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-dfaca711b7df742cdf0c1275bfeb33f8daf0606518eeac735bc156776e942ab53</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EokPhEUBe0kWmPvEts0JV1VKkkbqBHZLlOMeMR5kk2M4Ab4-jmXZbL2zr13euPyEfga2Bgbrer52N7TT265pBU7Q1U_IVWUGjNxVwIV6TFQMhqkaBviDvUtqzchSwt-SCMyk5F82K_Lw7jv2cwzjQ0VPf27_UYd_TP7Zcc5-jTTnOLs8RqR06ekC3s0NwtqdTHCeMOWCi3RzD8IvmHdKIOS__lHF6T9542yf8cH4vyY_7u--3D9X28eu325tt5UTDc9V566wGaHXntahd55mDWsvWY8u5bzrrmSrTQYNoneaydSCV1go3orat5Jfk6pR3Z3szxXCw8Z8ZbTAPN1uzaAw2XGvdHKGwn09saf_3jCmbQ0jLyHbAcU6mBqmVEhJEQeUJdXFMKaJ_zg3MLCaYvTmbYBYTFrm0WeI-nUvM7QG756inrRfgywnAspRjwGiSCzg47EJEl003hhdK_AcEYZw3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157664514</pqid></control><display><type>article</type><title>Evolution of flax cell wall ultrastructure and mechanical properties during the retting step</title><source>ScienceDirect Journals</source><creator>Bourmaud, Alain ; Siniscalco, David ; Foucat, Loïc ; Goudenhooft, Camille ; Falourd, Xavier ; Pontoire, Bruno ; Arnould, Olivier ; Beaugrand, Johnny ; Baley, Christophe</creator><creatorcontrib>Bourmaud, Alain ; Siniscalco, David ; Foucat, Loïc ; Goudenhooft, Camille ; Falourd, Xavier ; Pontoire, Bruno ; Arnould, Olivier ; Beaugrand, Johnny ; Baley, Christophe</creatorcontrib><description>•The impact of field retting time was studied on six flax fibres samples.•AFM measurements revealed a significant increase of cell wall stiffness with retting.•XRD and NMR investigations showed an increase of cellulose crystallinity with retting.•NMR evidenced a compaction of inaccessible polymers for most retted sample.•This densification can be a possible explanation of the indentation modulus increase. Flax retting is a major bioprocess in the cultivation and extraction cycle of flax fibres. The aim of the present study is to improve the understanding of the evolution of fibre properties and ultrastructure caused by this process at the plant cell wall scale. Initially, investigations of the mechanical performances of the flax cell walls by Atomic Force Microscopy (AFM) in Peak Force mode revealed a significant increase (+33%) in the cell wall indentation modulus with retting time. Two complementary structural studies are presented here, namely using X-Ray Diffraction (XRD) and solid state Nuclear Magnetic Resonance (NMR). An estimation of the cellulose crystallinity index by XRD measurements, confirmed by NMR, shows an increase of 8% in crystallinity with retting mainly due to the disappearance of amorphous polymer. In addition, NMR investigations show a compaction of inaccessible cell wall polymers, combined with an increase in the relaxation times of the C4 carbon. This densification provides a structural explanation for the observed improvement in mechanical performance of the secondary wall of flax fibres during the field retting process.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2018.10.065</identifier><identifier>PMID: 30553348</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Atomic force microscopy ; Chemical Sciences ; Engineering Sciences ; Flax fibres ; Mechanical properties ; Mechanics ; Mechanics of materials ; Nuclear magnetic resonance ; Polymers ; Retting ; Solid-state ; X-ray diffraction</subject><ispartof>Carbohydrate polymers, 2019-02, Vol.206, p.48-56</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-dfaca711b7df742cdf0c1275bfeb33f8daf0606518eeac735bc156776e942ab53</citedby><cites>FETCH-LOGICAL-c483t-dfaca711b7df742cdf0c1275bfeb33f8daf0606518eeac735bc156776e942ab53</cites><orcidid>0000-0002-8558-4740 ; 0000-0002-2165-421X ; 0000-0002-8643-9086 ; 0000-0001-8328-0359 ; 0000-0002-6716-2982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30553348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01937778$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourmaud, Alain</creatorcontrib><creatorcontrib>Siniscalco, David</creatorcontrib><creatorcontrib>Foucat, Loïc</creatorcontrib><creatorcontrib>Goudenhooft, Camille</creatorcontrib><creatorcontrib>Falourd, Xavier</creatorcontrib><creatorcontrib>Pontoire, Bruno</creatorcontrib><creatorcontrib>Arnould, Olivier</creatorcontrib><creatorcontrib>Beaugrand, Johnny</creatorcontrib><creatorcontrib>Baley, Christophe</creatorcontrib><title>Evolution of flax cell wall ultrastructure and mechanical properties during the retting step</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•The impact of field retting time was studied on six flax fibres samples.•AFM measurements revealed a significant increase of cell wall stiffness with retting.•XRD and NMR investigations showed an increase of cellulose crystallinity with retting.•NMR evidenced a compaction of inaccessible polymers for most retted sample.•This densification can be a possible explanation of the indentation modulus increase. Flax retting is a major bioprocess in the cultivation and extraction cycle of flax fibres. The aim of the present study is to improve the understanding of the evolution of fibre properties and ultrastructure caused by this process at the plant cell wall scale. Initially, investigations of the mechanical performances of the flax cell walls by Atomic Force Microscopy (AFM) in Peak Force mode revealed a significant increase (+33%) in the cell wall indentation modulus with retting time. Two complementary structural studies are presented here, namely using X-Ray Diffraction (XRD) and solid state Nuclear Magnetic Resonance (NMR). An estimation of the cellulose crystallinity index by XRD measurements, confirmed by NMR, shows an increase of 8% in crystallinity with retting mainly due to the disappearance of amorphous polymer. In addition, NMR investigations show a compaction of inaccessible cell wall polymers, combined with an increase in the relaxation times of the C4 carbon. This densification provides a structural explanation for the observed improvement in mechanical performance of the secondary wall of flax fibres during the field retting process.</description><subject>Atomic force microscopy</subject><subject>Chemical Sciences</subject><subject>Engineering Sciences</subject><subject>Flax fibres</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Nuclear magnetic resonance</subject><subject>Polymers</subject><subject>Retting</subject><subject>Solid-state</subject><subject>X-ray diffraction</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctu1DAUhi0EokPhEUBe0kWmPvEts0JV1VKkkbqBHZLlOMeMR5kk2M4Ab4-jmXZbL2zr13euPyEfga2Bgbrer52N7TT265pBU7Q1U_IVWUGjNxVwIV6TFQMhqkaBviDvUtqzchSwt-SCMyk5F82K_Lw7jv2cwzjQ0VPf27_UYd_TP7Zcc5-jTTnOLs8RqR06ekC3s0NwtqdTHCeMOWCi3RzD8IvmHdKIOS__lHF6T9542yf8cH4vyY_7u--3D9X28eu325tt5UTDc9V566wGaHXntahd55mDWsvWY8u5bzrrmSrTQYNoneaydSCV1go3orat5Jfk6pR3Z3szxXCw8Z8ZbTAPN1uzaAw2XGvdHKGwn09saf_3jCmbQ0jLyHbAcU6mBqmVEhJEQeUJdXFMKaJ_zg3MLCaYvTmbYBYTFrm0WeI-nUvM7QG756inrRfgywnAspRjwGiSCzg47EJEl003hhdK_AcEYZw3</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Bourmaud, Alain</creator><creator>Siniscalco, David</creator><creator>Foucat, Loïc</creator><creator>Goudenhooft, Camille</creator><creator>Falourd, Xavier</creator><creator>Pontoire, Bruno</creator><creator>Arnould, Olivier</creator><creator>Beaugrand, Johnny</creator><creator>Baley, Christophe</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8558-4740</orcidid><orcidid>https://orcid.org/0000-0002-2165-421X</orcidid><orcidid>https://orcid.org/0000-0002-8643-9086</orcidid><orcidid>https://orcid.org/0000-0001-8328-0359</orcidid><orcidid>https://orcid.org/0000-0002-6716-2982</orcidid></search><sort><creationdate>20190215</creationdate><title>Evolution of flax cell wall ultrastructure and mechanical properties during the retting step</title><author>Bourmaud, Alain ; Siniscalco, David ; Foucat, Loïc ; Goudenhooft, Camille ; Falourd, Xavier ; Pontoire, Bruno ; Arnould, Olivier ; Beaugrand, Johnny ; Baley, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-dfaca711b7df742cdf0c1275bfeb33f8daf0606518eeac735bc156776e942ab53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic force microscopy</topic><topic>Chemical Sciences</topic><topic>Engineering Sciences</topic><topic>Flax fibres</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Nuclear magnetic resonance</topic><topic>Polymers</topic><topic>Retting</topic><topic>Solid-state</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourmaud, Alain</creatorcontrib><creatorcontrib>Siniscalco, David</creatorcontrib><creatorcontrib>Foucat, Loïc</creatorcontrib><creatorcontrib>Goudenhooft, Camille</creatorcontrib><creatorcontrib>Falourd, Xavier</creatorcontrib><creatorcontrib>Pontoire, Bruno</creatorcontrib><creatorcontrib>Arnould, Olivier</creatorcontrib><creatorcontrib>Beaugrand, Johnny</creatorcontrib><creatorcontrib>Baley, Christophe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourmaud, Alain</au><au>Siniscalco, David</au><au>Foucat, Loïc</au><au>Goudenhooft, Camille</au><au>Falourd, Xavier</au><au>Pontoire, Bruno</au><au>Arnould, Olivier</au><au>Beaugrand, Johnny</au><au>Baley, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of flax cell wall ultrastructure and mechanical properties during the retting step</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2019-02-15</date><risdate>2019</risdate><volume>206</volume><spage>48</spage><epage>56</epage><pages>48-56</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>•The impact of field retting time was studied on six flax fibres samples.•AFM measurements revealed a significant increase of cell wall stiffness with retting.•XRD and NMR investigations showed an increase of cellulose crystallinity with retting.•NMR evidenced a compaction of inaccessible polymers for most retted sample.•This densification can be a possible explanation of the indentation modulus increase. Flax retting is a major bioprocess in the cultivation and extraction cycle of flax fibres. The aim of the present study is to improve the understanding of the evolution of fibre properties and ultrastructure caused by this process at the plant cell wall scale. Initially, investigations of the mechanical performances of the flax cell walls by Atomic Force Microscopy (AFM) in Peak Force mode revealed a significant increase (+33%) in the cell wall indentation modulus with retting time. Two complementary structural studies are presented here, namely using X-Ray Diffraction (XRD) and solid state Nuclear Magnetic Resonance (NMR). An estimation of the cellulose crystallinity index by XRD measurements, confirmed by NMR, shows an increase of 8% in crystallinity with retting mainly due to the disappearance of amorphous polymer. In addition, NMR investigations show a compaction of inaccessible cell wall polymers, combined with an increase in the relaxation times of the C4 carbon. This densification provides a structural explanation for the observed improvement in mechanical performance of the secondary wall of flax fibres during the field retting process.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30553348</pmid><doi>10.1016/j.carbpol.2018.10.065</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8558-4740</orcidid><orcidid>https://orcid.org/0000-0002-2165-421X</orcidid><orcidid>https://orcid.org/0000-0002-8643-9086</orcidid><orcidid>https://orcid.org/0000-0001-8328-0359</orcidid><orcidid>https://orcid.org/0000-0002-6716-2982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2019-02, Vol.206, p.48-56
issn 0144-8617
1879-1344
language eng
recordid cdi_hal_primary_oai_HAL_hal_01937778v1
source ScienceDirect Journals
subjects Atomic force microscopy
Chemical Sciences
Engineering Sciences
Flax fibres
Mechanical properties
Mechanics
Mechanics of materials
Nuclear magnetic resonance
Polymers
Retting
Solid-state
X-ray diffraction
title Evolution of flax cell wall ultrastructure and mechanical properties during the retting step
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20flax%20cell%20wall%20ultrastructure%20and%20mechanical%20properties%20during%20the%20retting%20step&rft.jtitle=Carbohydrate%20polymers&rft.au=Bourmaud,%20Alain&rft.date=2019-02-15&rft.volume=206&rft.spage=48&rft.epage=56&rft.pages=48-56&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2018.10.065&rft_dat=%3Cproquest_hal_p%3E2157664514%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-dfaca711b7df742cdf0c1275bfeb33f8daf0606518eeac735bc156776e942ab53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157664514&rft_id=info:pmid/30553348&rfr_iscdi=true