Loading…

Catalyzed Chain Transfer in Vinyl Acetate Polymerization Mediated by 9‑Oxyphenalenone Cobalt(II) Complexes

The vinyl acetate (VAc) radical polymerization initiated by V-70 at 30 °C in the presence of [CoII(OPN)2] (OPN = deprotonated 9-oxyphenalenone), 1, leads to PVAc of lower molecular weight (MW) than expected for organometallic-mediated radical polymerization (OMRP), whether reversible termination or...

Full description

Saved in:
Bibliographic Details
Published in:ACS macro letters 2017-09, Vol.6 (9), p.959-962
Main Authors: Bellan, Ekaterina V, Thevenin, Lucas, Gayet, Florence, Fliedel, Christophe, Poli, Rinaldo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vinyl acetate (VAc) radical polymerization initiated by V-70 at 30 °C in the presence of [CoII(OPN)2] (OPN = deprotonated 9-oxyphenalenone), 1, leads to PVAc of lower molecular weight (MW) than expected for organometallic-mediated radical polymerization (OMRP), whether reversible termination or degenerate transfer conditions are used. This represents the first clear evidence of catalyzed chain transfer (CCT) in VAc polymerization. The bis-pyridine adduct [CoII(OPN)2(py)2], 2, shows a marginally lower polymerization rate and an increased CCT activity relative to 1, whereas the activity decreases with marginal effect on the polymerization rate upon addition of excess py. However, raising the temperature to 80 °C (with AIBN as initiator) led to a low MW polymer even in the presence of a large py excess. The CCT was confirmed by 1H NMR characterization of the chain ends and by a MALDI-TOF MS analysis of the recovered polymer. The collective trends are consistent with greater CCT activity for the 5-coordinate complex [CoII(OPN)2(py)] relative to 1 and 2. The presence of py association/dissociation equilibria relating these three complexes was confirmed by a 1H NMR investigation.
ISSN:2161-1653
2161-1653
DOI:10.1021/acsmacrolett.7b00551