Loading…
Long-distance transport of magnon spin information in a magnetic insulator at room temperature
Although electron motion is prohibited in magnetic insulators, the electron spin can be transported by magnons. Such magnons, generated and detected using all-electrical methods, are now shown to travel micrometre distances at room temperature. The transport of spin information has been studied in v...
Saved in:
Published in: | Nature physics 2015-12, Vol.11 (12), p.1022-1026 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693 |
---|---|
cites | cdi_FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693 |
container_end_page | 1026 |
container_issue | 12 |
container_start_page | 1022 |
container_title | Nature physics |
container_volume | 11 |
creator | Cornelissen, L. J. Liu, J. Duine, R. A. Youssef, J. Ben van Wees, B. J. |
description | Although electron motion is prohibited in magnetic insulators, the electron spin can be transported by magnons. Such magnons, generated and detected using all-electrical methods, are now shown to travel micrometre distances at room temperature.
The transport of spin information has been studied in various materials, such as metals
1
, semiconductors
2
and graphene
3
. In these materials, spin is transported by the diffusion of conduction electrons
4
. Here we study the diffusion and relaxation of spin in a magnetic insulator, where the large bandgap prohibits the motion of electrons. Spin can still be transported, however, through the diffusion of non-equilibrium magnons, the quanta of spin-wave excitations in magnetically ordered materials. Here we show experimentally that these magnons can be excited and detected fully electrically
5
,
6
,
7
in a linear response, and can transport spin angular momentum through the magnetic insulator yttrium iron garnet (YIG) over distances as large as 40 μm. We identify two transport regimes: the diffusion-limited regime for distances shorter than the magnon spin diffusion length, and the relaxation-limited regime for larger distances. With a model similar to the diffusion–relaxation model for electron spin transport in (semi)conducting materials, we extract the magnon spin diffusion length
λ
= 9.4 ± 0.6 μm in a thin 200 nm YIG film at room temperature. |
doi_str_mv | 10.1038/nphys3465 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01945678v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3956577341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693</originalsourceid><addsrcrecordid>eNplkNFKwzAUhoMoOKcXvkHAK4VqTpOm6eUY6oSCN7sPaZpuHWtSk1TY2_gsPpmdkyl4df5zzsfH4SB0DeQeCBUPtl_vAmU8O0ETyFmWpEzA6THn9BxdhLAhhKUc6ATJ0tlVUrchKqsNjl7Z0DsfsWtwp1bWWRz61uLWNs53KrZun7H6XprY6rELw1ZF57GK2DvXfX5E0_XGqzh4c4nOGrUN5uqnTtHy6XE5XyTl6_PLfFYmmhV5TKioKp1mRusmrVNe6wxqqJu6MMyIihAwlQBFTKZr3VChWaqFUZyoRuSKF3SKbg_atdrK3red8jvpVCsXs1LuZwQKlvFcvMPI3hzY3ru3wYQoN27wdrxOQs45QAZAf43auxC8aY5aIHL_anl89cjeHdgwMnZl_B_jP_gLWEWDZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766115113</pqid></control><display><type>article</type><title>Long-distance transport of magnon spin information in a magnetic insulator at room temperature</title><source>Nature_系列刊</source><creator>Cornelissen, L. J. ; Liu, J. ; Duine, R. A. ; Youssef, J. Ben ; van Wees, B. J.</creator><creatorcontrib>Cornelissen, L. J. ; Liu, J. ; Duine, R. A. ; Youssef, J. Ben ; van Wees, B. J.</creatorcontrib><description>Although electron motion is prohibited in magnetic insulators, the electron spin can be transported by magnons. Such magnons, generated and detected using all-electrical methods, are now shown to travel micrometre distances at room temperature.
The transport of spin information has been studied in various materials, such as metals
1
, semiconductors
2
and graphene
3
. In these materials, spin is transported by the diffusion of conduction electrons
4
. Here we study the diffusion and relaxation of spin in a magnetic insulator, where the large bandgap prohibits the motion of electrons. Spin can still be transported, however, through the diffusion of non-equilibrium magnons, the quanta of spin-wave excitations in magnetically ordered materials. Here we show experimentally that these magnons can be excited and detected fully electrically
5
,
6
,
7
in a linear response, and can transport spin angular momentum through the magnetic insulator yttrium iron garnet (YIG) over distances as large as 40 μm. We identify two transport regimes: the diffusion-limited regime for distances shorter than the magnon spin diffusion length, and the relaxation-limited regime for larger distances. With a model similar to the diffusion–relaxation model for electron spin transport in (semi)conducting materials, we extract the magnon spin diffusion length
λ
= 9.4 ± 0.6 μm in a thin 200 nm YIG film at room temperature.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>EISSN: 1476-4636</identifier><identifier>DOI: 10.1038/nphys3465</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/766/119/1001 ; 639/766/119/997 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter ; Condensed Matter Physics ; Diffusion ; letter ; Magnetism ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Theoretical ; Yttrium</subject><ispartof>Nature physics, 2015-12, Vol.11 (12), p.1022-1026</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Dec 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693</citedby><cites>FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693</cites><orcidid>0000-0002-9518-9285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01945678$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cornelissen, L. J.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Duine, R. A.</creatorcontrib><creatorcontrib>Youssef, J. Ben</creatorcontrib><creatorcontrib>van Wees, B. J.</creatorcontrib><title>Long-distance transport of magnon spin information in a magnetic insulator at room temperature</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Although electron motion is prohibited in magnetic insulators, the electron spin can be transported by magnons. Such magnons, generated and detected using all-electrical methods, are now shown to travel micrometre distances at room temperature.
The transport of spin information has been studied in various materials, such as metals
1
, semiconductors
2
and graphene
3
. In these materials, spin is transported by the diffusion of conduction electrons
4
. Here we study the diffusion and relaxation of spin in a magnetic insulator, where the large bandgap prohibits the motion of electrons. Spin can still be transported, however, through the diffusion of non-equilibrium magnons, the quanta of spin-wave excitations in magnetically ordered materials. Here we show experimentally that these magnons can be excited and detected fully electrically
5
,
6
,
7
in a linear response, and can transport spin angular momentum through the magnetic insulator yttrium iron garnet (YIG) over distances as large as 40 μm. We identify two transport regimes: the diffusion-limited regime for distances shorter than the magnon spin diffusion length, and the relaxation-limited regime for larger distances. With a model similar to the diffusion–relaxation model for electron spin transport in (semi)conducting materials, we extract the magnon spin diffusion length
λ
= 9.4 ± 0.6 μm in a thin 200 nm YIG film at room temperature.</description><subject>142/126</subject><subject>639/766/119/1001</subject><subject>639/766/119/997</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter</subject><subject>Condensed Matter Physics</subject><subject>Diffusion</subject><subject>letter</subject><subject>Magnetism</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Theoretical</subject><subject>Yttrium</subject><issn>1745-2473</issn><issn>1745-2481</issn><issn>1476-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNplkNFKwzAUhoMoOKcXvkHAK4VqTpOm6eUY6oSCN7sPaZpuHWtSk1TY2_gsPpmdkyl4df5zzsfH4SB0DeQeCBUPtl_vAmU8O0ETyFmWpEzA6THn9BxdhLAhhKUc6ATJ0tlVUrchKqsNjl7Z0DsfsWtwp1bWWRz61uLWNs53KrZun7H6XprY6rELw1ZF57GK2DvXfX5E0_XGqzh4c4nOGrUN5uqnTtHy6XE5XyTl6_PLfFYmmhV5TKioKp1mRusmrVNe6wxqqJu6MMyIihAwlQBFTKZr3VChWaqFUZyoRuSKF3SKbg_atdrK3red8jvpVCsXs1LuZwQKlvFcvMPI3hzY3ru3wYQoN27wdrxOQs45QAZAf43auxC8aY5aIHL_anl89cjeHdgwMnZl_B_jP_gLWEWDZw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Cornelissen, L. J.</creator><creator>Liu, J.</creator><creator>Duine, R. A.</creator><creator>Youssef, J. Ben</creator><creator>van Wees, B. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [2005-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9518-9285</orcidid></search><sort><creationdate>20151201</creationdate><title>Long-distance transport of magnon spin information in a magnetic insulator at room temperature</title><author>Cornelissen, L. J. ; Liu, J. ; Duine, R. A. ; Youssef, J. Ben ; van Wees, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>142/126</topic><topic>639/766/119/1001</topic><topic>639/766/119/997</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter</topic><topic>Condensed Matter Physics</topic><topic>Diffusion</topic><topic>letter</topic><topic>Magnetism</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Theoretical</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cornelissen, L. J.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Duine, R. A.</creatorcontrib><creatorcontrib>Youssef, J. Ben</creatorcontrib><creatorcontrib>van Wees, B. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cornelissen, L. J.</au><au>Liu, J.</au><au>Duine, R. A.</au><au>Youssef, J. Ben</au><au>van Wees, B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-distance transport of magnon spin information in a magnetic insulator at room temperature</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>11</volume><issue>12</issue><spage>1022</spage><epage>1026</epage><pages>1022-1026</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><eissn>1476-4636</eissn><abstract>Although electron motion is prohibited in magnetic insulators, the electron spin can be transported by magnons. Such magnons, generated and detected using all-electrical methods, are now shown to travel micrometre distances at room temperature.
The transport of spin information has been studied in various materials, such as metals
1
, semiconductors
2
and graphene
3
. In these materials, spin is transported by the diffusion of conduction electrons
4
. Here we study the diffusion and relaxation of spin in a magnetic insulator, where the large bandgap prohibits the motion of electrons. Spin can still be transported, however, through the diffusion of non-equilibrium magnons, the quanta of spin-wave excitations in magnetically ordered materials. Here we show experimentally that these magnons can be excited and detected fully electrically
5
,
6
,
7
in a linear response, and can transport spin angular momentum through the magnetic insulator yttrium iron garnet (YIG) over distances as large as 40 μm. We identify two transport regimes: the diffusion-limited regime for distances shorter than the magnon spin diffusion length, and the relaxation-limited regime for larger distances. With a model similar to the diffusion–relaxation model for electron spin transport in (semi)conducting materials, we extract the magnon spin diffusion length
λ
= 9.4 ± 0.6 μm in a thin 200 nm YIG film at room temperature.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3465</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9518-9285</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2015-12, Vol.11 (12), p.1022-1026 |
issn | 1745-2473 1745-2481 1476-4636 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01945678v1 |
source | Nature_系列刊 |
subjects | 142/126 639/766/119/1001 639/766/119/997 Atomic Classical and Continuum Physics Complex Systems Condensed Matter Condensed Matter Physics Diffusion letter Magnetism Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Theoretical Yttrium |
title | Long-distance transport of magnon spin information in a magnetic insulator at room temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-distance%20transport%20of%20magnon%20spin%20information%20in%20a%20magnetic%20insulator%20at%20room%C2%A0temperature&rft.jtitle=Nature%20physics&rft.au=Cornelissen,%20L.%20J.&rft.date=2015-12-01&rft.volume=11&rft.issue=12&rft.spage=1022&rft.epage=1026&rft.pages=1022-1026&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3465&rft_dat=%3Cproquest_hal_p%3E3956577341%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766115113&rft_id=info:pmid/&rfr_iscdi=true |