Loading…

Long-distance transport of magnon spin information in a magnetic insulator at room temperature

Although electron motion is prohibited in magnetic insulators, the electron spin can be transported by magnons. Such magnons, generated and detected using all-electrical methods, are now shown to travel micrometre distances at room temperature. The transport of spin information has been studied in v...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2015-12, Vol.11 (12), p.1022-1026
Main Authors: Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. Ben, van Wees, B. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693
cites cdi_FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693
container_end_page 1026
container_issue 12
container_start_page 1022
container_title Nature physics
container_volume 11
creator Cornelissen, L. J.
Liu, J.
Duine, R. A.
Youssef, J. Ben
van Wees, B. J.
description Although electron motion is prohibited in magnetic insulators, the electron spin can be transported by magnons. Such magnons, generated and detected using all-electrical methods, are now shown to travel micrometre distances at room temperature. The transport of spin information has been studied in various materials, such as metals 1 , semiconductors 2 and graphene 3 . In these materials, spin is transported by the diffusion of conduction electrons 4 . Here we study the diffusion and relaxation of spin in a magnetic insulator, where the large bandgap prohibits the motion of electrons. Spin can still be transported, however, through the diffusion of non-equilibrium magnons, the quanta of spin-wave excitations in magnetically ordered materials. Here we show experimentally that these magnons can be excited and detected fully electrically 5 , 6 , 7 in a linear response, and can transport spin angular momentum through the magnetic insulator yttrium iron garnet (YIG) over distances as large as 40 μm. We identify two transport regimes: the diffusion-limited regime for distances shorter than the magnon spin diffusion length, and the relaxation-limited regime for larger distances. With a model similar to the diffusion–relaxation model for electron spin transport in (semi)conducting materials, we extract the magnon spin diffusion length λ = 9.4 ± 0.6 μm in a thin 200 nm YIG film at room temperature.
doi_str_mv 10.1038/nphys3465
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01945678v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3956577341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693</originalsourceid><addsrcrecordid>eNplkNFKwzAUhoMoOKcXvkHAK4VqTpOm6eUY6oSCN7sPaZpuHWtSk1TY2_gsPpmdkyl4df5zzsfH4SB0DeQeCBUPtl_vAmU8O0ETyFmWpEzA6THn9BxdhLAhhKUc6ATJ0tlVUrchKqsNjl7Z0DsfsWtwp1bWWRz61uLWNs53KrZun7H6XprY6rELw1ZF57GK2DvXfX5E0_XGqzh4c4nOGrUN5uqnTtHy6XE5XyTl6_PLfFYmmhV5TKioKp1mRusmrVNe6wxqqJu6MMyIihAwlQBFTKZr3VChWaqFUZyoRuSKF3SKbg_atdrK3red8jvpVCsXs1LuZwQKlvFcvMPI3hzY3ru3wYQoN27wdrxOQs45QAZAf43auxC8aY5aIHL_anl89cjeHdgwMnZl_B_jP_gLWEWDZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766115113</pqid></control><display><type>article</type><title>Long-distance transport of magnon spin information in a magnetic insulator at room temperature</title><source>Nature_系列刊</source><creator>Cornelissen, L. J. ; Liu, J. ; Duine, R. A. ; Youssef, J. Ben ; van Wees, B. J.</creator><creatorcontrib>Cornelissen, L. J. ; Liu, J. ; Duine, R. A. ; Youssef, J. Ben ; van Wees, B. J.</creatorcontrib><description>Although electron motion is prohibited in magnetic insulators, the electron spin can be transported by magnons. Such magnons, generated and detected using all-electrical methods, are now shown to travel micrometre distances at room temperature. The transport of spin information has been studied in various materials, such as metals 1 , semiconductors 2 and graphene 3 . In these materials, spin is transported by the diffusion of conduction electrons 4 . Here we study the diffusion and relaxation of spin in a magnetic insulator, where the large bandgap prohibits the motion of electrons. Spin can still be transported, however, through the diffusion of non-equilibrium magnons, the quanta of spin-wave excitations in magnetically ordered materials. Here we show experimentally that these magnons can be excited and detected fully electrically 5 , 6 , 7 in a linear response, and can transport spin angular momentum through the magnetic insulator yttrium iron garnet (YIG) over distances as large as 40 μm. We identify two transport regimes: the diffusion-limited regime for distances shorter than the magnon spin diffusion length, and the relaxation-limited regime for larger distances. With a model similar to the diffusion–relaxation model for electron spin transport in (semi)conducting materials, we extract the magnon spin diffusion length λ = 9.4 ± 0.6 μm in a thin 200 nm YIG film at room temperature.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>EISSN: 1476-4636</identifier><identifier>DOI: 10.1038/nphys3465</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/766/119/1001 ; 639/766/119/997 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter ; Condensed Matter Physics ; Diffusion ; letter ; Magnetism ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Theoretical ; Yttrium</subject><ispartof>Nature physics, 2015-12, Vol.11 (12), p.1022-1026</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Dec 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693</citedby><cites>FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693</cites><orcidid>0000-0002-9518-9285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01945678$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cornelissen, L. J.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Duine, R. A.</creatorcontrib><creatorcontrib>Youssef, J. Ben</creatorcontrib><creatorcontrib>van Wees, B. J.</creatorcontrib><title>Long-distance transport of magnon spin information in a magnetic insulator at room temperature</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Although electron motion is prohibited in magnetic insulators, the electron spin can be transported by magnons. Such magnons, generated and detected using all-electrical methods, are now shown to travel micrometre distances at room temperature. The transport of spin information has been studied in various materials, such as metals 1 , semiconductors 2 and graphene 3 . In these materials, spin is transported by the diffusion of conduction electrons 4 . Here we study the diffusion and relaxation of spin in a magnetic insulator, where the large bandgap prohibits the motion of electrons. Spin can still be transported, however, through the diffusion of non-equilibrium magnons, the quanta of spin-wave excitations in magnetically ordered materials. Here we show experimentally that these magnons can be excited and detected fully electrically 5 , 6 , 7 in a linear response, and can transport spin angular momentum through the magnetic insulator yttrium iron garnet (YIG) over distances as large as 40 μm. We identify two transport regimes: the diffusion-limited regime for distances shorter than the magnon spin diffusion length, and the relaxation-limited regime for larger distances. With a model similar to the diffusion–relaxation model for electron spin transport in (semi)conducting materials, we extract the magnon spin diffusion length λ = 9.4 ± 0.6 μm in a thin 200 nm YIG film at room temperature.</description><subject>142/126</subject><subject>639/766/119/1001</subject><subject>639/766/119/997</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter</subject><subject>Condensed Matter Physics</subject><subject>Diffusion</subject><subject>letter</subject><subject>Magnetism</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Theoretical</subject><subject>Yttrium</subject><issn>1745-2473</issn><issn>1745-2481</issn><issn>1476-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNplkNFKwzAUhoMoOKcXvkHAK4VqTpOm6eUY6oSCN7sPaZpuHWtSk1TY2_gsPpmdkyl4df5zzsfH4SB0DeQeCBUPtl_vAmU8O0ETyFmWpEzA6THn9BxdhLAhhKUc6ATJ0tlVUrchKqsNjl7Z0DsfsWtwp1bWWRz61uLWNs53KrZun7H6XprY6rELw1ZF57GK2DvXfX5E0_XGqzh4c4nOGrUN5uqnTtHy6XE5XyTl6_PLfFYmmhV5TKioKp1mRusmrVNe6wxqqJu6MMyIihAwlQBFTKZr3VChWaqFUZyoRuSKF3SKbg_atdrK3red8jvpVCsXs1LuZwQKlvFcvMPI3hzY3ru3wYQoN27wdrxOQs45QAZAf43auxC8aY5aIHL_anl89cjeHdgwMnZl_B_jP_gLWEWDZw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Cornelissen, L. J.</creator><creator>Liu, J.</creator><creator>Duine, R. A.</creator><creator>Youssef, J. Ben</creator><creator>van Wees, B. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group [2005-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9518-9285</orcidid></search><sort><creationdate>20151201</creationdate><title>Long-distance transport of magnon spin information in a magnetic insulator at room temperature</title><author>Cornelissen, L. J. ; Liu, J. ; Duine, R. A. ; Youssef, J. Ben ; van Wees, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>142/126</topic><topic>639/766/119/1001</topic><topic>639/766/119/997</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter</topic><topic>Condensed Matter Physics</topic><topic>Diffusion</topic><topic>letter</topic><topic>Magnetism</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Theoretical</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cornelissen, L. J.</creatorcontrib><creatorcontrib>Liu, J.</creatorcontrib><creatorcontrib>Duine, R. A.</creatorcontrib><creatorcontrib>Youssef, J. Ben</creatorcontrib><creatorcontrib>van Wees, B. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cornelissen, L. J.</au><au>Liu, J.</au><au>Duine, R. A.</au><au>Youssef, J. Ben</au><au>van Wees, B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-distance transport of magnon spin information in a magnetic insulator at room temperature</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>11</volume><issue>12</issue><spage>1022</spage><epage>1026</epage><pages>1022-1026</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><eissn>1476-4636</eissn><abstract>Although electron motion is prohibited in magnetic insulators, the electron spin can be transported by magnons. Such magnons, generated and detected using all-electrical methods, are now shown to travel micrometre distances at room temperature. The transport of spin information has been studied in various materials, such as metals 1 , semiconductors 2 and graphene 3 . In these materials, spin is transported by the diffusion of conduction electrons 4 . Here we study the diffusion and relaxation of spin in a magnetic insulator, where the large bandgap prohibits the motion of electrons. Spin can still be transported, however, through the diffusion of non-equilibrium magnons, the quanta of spin-wave excitations in magnetically ordered materials. Here we show experimentally that these magnons can be excited and detected fully electrically 5 , 6 , 7 in a linear response, and can transport spin angular momentum through the magnetic insulator yttrium iron garnet (YIG) over distances as large as 40 μm. We identify two transport regimes: the diffusion-limited regime for distances shorter than the magnon spin diffusion length, and the relaxation-limited regime for larger distances. With a model similar to the diffusion–relaxation model for electron spin transport in (semi)conducting materials, we extract the magnon spin diffusion length λ = 9.4 ± 0.6 μm in a thin 200 nm YIG film at room temperature.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3465</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9518-9285</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2015-12, Vol.11 (12), p.1022-1026
issn 1745-2473
1745-2481
1476-4636
language eng
recordid cdi_hal_primary_oai_HAL_hal_01945678v1
source Nature_系列刊
subjects 142/126
639/766/119/1001
639/766/119/997
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter
Condensed Matter Physics
Diffusion
letter
Magnetism
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Theoretical
Yttrium
title Long-distance transport of magnon spin information in a magnetic insulator at room temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-distance%20transport%20of%20magnon%20spin%20information%20in%20a%20magnetic%20insulator%20at%20room%C2%A0temperature&rft.jtitle=Nature%20physics&rft.au=Cornelissen,%20L.%20J.&rft.date=2015-12-01&rft.volume=11&rft.issue=12&rft.spage=1022&rft.epage=1026&rft.pages=1022-1026&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3465&rft_dat=%3Cproquest_hal_p%3E3956577341%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-38bbc25eccf2d26dc51d1dfd9e4e8b001eb81a0e5cdcf38c42c8ea60af87a693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766115113&rft_id=info:pmid/&rfr_iscdi=true