Loading…
Shear reversal in dense suspensions: the challenge to fabric evolution models from simulation data
Dense suspensions of hard particles are important as industrial or environmental materials (e.g. fresh concrete, food, paint or mud). To date, most constitutive models developed to describe them are, explicitly or effectively, ‘fabric evolution models’ based on: (i) a stress rule connecting the macr...
Saved in:
Published in: | Journal of fluid mechanics 2018-07, Vol.847, p.700-734 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-f5acb21d875ea0e7bc8c57f110a8e7cd882e2591c43778cbed067031993cf0e73 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-f5acb21d875ea0e7bc8c57f110a8e7cd882e2591c43778cbed067031993cf0e73 |
container_end_page | 734 |
container_issue | |
container_start_page | 700 |
container_title | Journal of fluid mechanics |
container_volume | 847 |
creator | Chacko, Rahul N. Mari, Romain Fielding, Suzanne M. Cates, Michael E. |
description | Dense suspensions of hard particles are important as industrial or environmental materials (e.g. fresh concrete, food, paint or mud). To date, most constitutive models developed to describe them are, explicitly or effectively, ‘fabric evolution models’ based on: (i) a stress rule connecting the macroscopic stress to a second-rank microstructural fabric tensor
$\unicode[STIX]{x1D64C}$
; and (ii) a closed time-evolution equation for
$\unicode[STIX]{x1D64C}$
. In dense suspensions, most of the stress comes from short-ranged pairwise steric or lubrication interactions at near-contacts (suitably defined), so a natural choice for
$\unicode[STIX]{x1D64C}$
is the deviatoric second moment of the distribution
$P(\boldsymbol{p})$
of the near-contact orientations
$\boldsymbol{p}$
. Here we test directly whether a closed time-evolution equation for such a
$\unicode[STIX]{x1D64C}$
can exist, for the case of inertialess non-Brownian hard spheres in a Newtonian solvent. We perform extensive numerical simulations accessing high levels of detail for the evolution of
$P(\boldsymbol{p})$
under shear reversal, providing a stringent test for fabric evolution models. We consider a generic class of these models as defined by Hand (J. Fluid Mech., vol. 13, 1962, pp. 33–46) that assumes little as to the micromechanical behaviour of the suspension and is only constrained by frame indifference. Motivated by the smallness of microstructural anisotropies in the dense regime, we start with linear models in this class and successively consider those increasingly nonlinear in
$\unicode[STIX]{x1D64C}$
. Based on these results, we suggest that no closed fabric evolution model properly describes the dynamics of the fabric tensor under reversal. We attribute this to the fact that, while a second-rank tensor captures reasonably well the microstructure in steady flows, it gives a poor description during significant parts of the microstructural evolution following shear reversal. Specifically, the truncation of
$P(\boldsymbol{p})$
at second spherical harmonic (or second-rank tensor) level describes ellipsoidal distributions of near-contact orientations, whereas on reversal we observe distributions that are markedly four-lobed; moreover,
${\dot{P}}(\boldsymbol{p})$
has oblique axes, not collinear with those of
$\unicode[STIX]{x1D64C}$
in the shear plane. This structure probably precludes any adequate closure at second-rank level. Instead, our numerical data suggest that closures involving the cou |
doi_str_mv | 10.1017/jfm.2018.279 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01954130v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2018_279</cupid><sourcerecordid>2209863447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f5acb21d875ea0e7bc8c57f110a8e7cd882e2591c43778cbed067031993cf0e73</originalsourceid><addsrcrecordid>eNptkM9Kw0AQhxdRsFZvPsCCJ8HE_ZNkE2-lqBUKHtTzst2dtClJtu4mBd-mz9Inc2OLXjzNMHzzY-ZD6JqSmBIq7tdlEzNC85iJ4gSNaJIVkciS9BSNCGEsopSRc3Th_ZoQykkhRsi8rUA57GALzqsaVy020HrAvveb0FS29Q-4W8F-p1eqrqFdAu4sLtXCVRrD1tZ9FyDcWAO1x6WzzX7nq6av1c_cqE5dorNS1R6ujnWMPp4e36ezaP76_DKdzCPNedZFZar0glGTixQUAbHQuU5FSSlROQht8pwBSwuqEy5ErhdgSCYIp0XBdRl4Pka3h9xwqdy4qlHuS1pVydlkLocZoUWahM-3NLA3B3bj7GcPvpNr27s2nCcZI0We8SQZEu8OlHbWewflbywlcnAug3M5OJfBecDjI66a4Mcs4S_134VvHrqF0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209863447</pqid></control><display><type>article</type><title>Shear reversal in dense suspensions: the challenge to fabric evolution models from simulation data</title><source>Cambridge Journals Online</source><creator>Chacko, Rahul N. ; Mari, Romain ; Fielding, Suzanne M. ; Cates, Michael E.</creator><creatorcontrib>Chacko, Rahul N. ; Mari, Romain ; Fielding, Suzanne M. ; Cates, Michael E.</creatorcontrib><description>Dense suspensions of hard particles are important as industrial or environmental materials (e.g. fresh concrete, food, paint or mud). To date, most constitutive models developed to describe them are, explicitly or effectively, ‘fabric evolution models’ based on: (i) a stress rule connecting the macroscopic stress to a second-rank microstructural fabric tensor
$\unicode[STIX]{x1D64C}$
; and (ii) a closed time-evolution equation for
$\unicode[STIX]{x1D64C}$
. In dense suspensions, most of the stress comes from short-ranged pairwise steric or lubrication interactions at near-contacts (suitably defined), so a natural choice for
$\unicode[STIX]{x1D64C}$
is the deviatoric second moment of the distribution
$P(\boldsymbol{p})$
of the near-contact orientations
$\boldsymbol{p}$
. Here we test directly whether a closed time-evolution equation for such a
$\unicode[STIX]{x1D64C}$
can exist, for the case of inertialess non-Brownian hard spheres in a Newtonian solvent. We perform extensive numerical simulations accessing high levels of detail for the evolution of
$P(\boldsymbol{p})$
under shear reversal, providing a stringent test for fabric evolution models. We consider a generic class of these models as defined by Hand (J. Fluid Mech., vol. 13, 1962, pp. 33–46) that assumes little as to the micromechanical behaviour of the suspension and is only constrained by frame indifference. Motivated by the smallness of microstructural anisotropies in the dense regime, we start with linear models in this class and successively consider those increasingly nonlinear in
$\unicode[STIX]{x1D64C}$
. Based on these results, we suggest that no closed fabric evolution model properly describes the dynamics of the fabric tensor under reversal. We attribute this to the fact that, while a second-rank tensor captures reasonably well the microstructure in steady flows, it gives a poor description during significant parts of the microstructural evolution following shear reversal. Specifically, the truncation of
$P(\boldsymbol{p})$
at second spherical harmonic (or second-rank tensor) level describes ellipsoidal distributions of near-contact orientations, whereas on reversal we observe distributions that are markedly four-lobed; moreover,
${\dot{P}}(\boldsymbol{p})$
has oblique axes, not collinear with those of
$\unicode[STIX]{x1D64C}$
in the shear plane. This structure probably precludes any adequate closure at second-rank level. Instead, our numerical data suggest that closures involving the coupled evolution of both a fabric tensor and a fourth-rank tensor might be reasonably accurate.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2018.279</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Closures ; Computer simulation ; Condensed Matter ; Connecting ; Constitutive models ; Contact stresses ; Dynamics ; Evolution ; Interactions ; JFM Papers ; Lubrication ; Mathematical analysis ; Mathematical models ; Microstructure ; Physics ; Polymers ; Rheology ; Shear ; Shear planes ; Simulation ; Soft Condensed Matter ; Spheres ; Spherical harmonics ; Steady flow ; Tensors ; Ultrasonic testing</subject><ispartof>Journal of fluid mechanics, 2018-07, Vol.847, p.700-734</ispartof><rights>2018 Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f5acb21d875ea0e7bc8c57f110a8e7cd882e2591c43778cbed067031993cf0e73</citedby><cites>FETCH-LOGICAL-c336t-f5acb21d875ea0e7bc8c57f110a8e7cd882e2591c43778cbed067031993cf0e73</cites><orcidid>0000-0002-3324-2976 ; 0000-0002-5922-7731 ; 0000-0001-7877-416X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112018002793/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,72960</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01954130$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chacko, Rahul N.</creatorcontrib><creatorcontrib>Mari, Romain</creatorcontrib><creatorcontrib>Fielding, Suzanne M.</creatorcontrib><creatorcontrib>Cates, Michael E.</creatorcontrib><title>Shear reversal in dense suspensions: the challenge to fabric evolution models from simulation data</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Dense suspensions of hard particles are important as industrial or environmental materials (e.g. fresh concrete, food, paint or mud). To date, most constitutive models developed to describe them are, explicitly or effectively, ‘fabric evolution models’ based on: (i) a stress rule connecting the macroscopic stress to a second-rank microstructural fabric tensor
$\unicode[STIX]{x1D64C}$
; and (ii) a closed time-evolution equation for
$\unicode[STIX]{x1D64C}$
. In dense suspensions, most of the stress comes from short-ranged pairwise steric or lubrication interactions at near-contacts (suitably defined), so a natural choice for
$\unicode[STIX]{x1D64C}$
is the deviatoric second moment of the distribution
$P(\boldsymbol{p})$
of the near-contact orientations
$\boldsymbol{p}$
. Here we test directly whether a closed time-evolution equation for such a
$\unicode[STIX]{x1D64C}$
can exist, for the case of inertialess non-Brownian hard spheres in a Newtonian solvent. We perform extensive numerical simulations accessing high levels of detail for the evolution of
$P(\boldsymbol{p})$
under shear reversal, providing a stringent test for fabric evolution models. We consider a generic class of these models as defined by Hand (J. Fluid Mech., vol. 13, 1962, pp. 33–46) that assumes little as to the micromechanical behaviour of the suspension and is only constrained by frame indifference. Motivated by the smallness of microstructural anisotropies in the dense regime, we start with linear models in this class and successively consider those increasingly nonlinear in
$\unicode[STIX]{x1D64C}$
. Based on these results, we suggest that no closed fabric evolution model properly describes the dynamics of the fabric tensor under reversal. We attribute this to the fact that, while a second-rank tensor captures reasonably well the microstructure in steady flows, it gives a poor description during significant parts of the microstructural evolution following shear reversal. Specifically, the truncation of
$P(\boldsymbol{p})$
at second spherical harmonic (or second-rank tensor) level describes ellipsoidal distributions of near-contact orientations, whereas on reversal we observe distributions that are markedly four-lobed; moreover,
${\dot{P}}(\boldsymbol{p})$
has oblique axes, not collinear with those of
$\unicode[STIX]{x1D64C}$
in the shear plane. This structure probably precludes any adequate closure at second-rank level. Instead, our numerical data suggest that closures involving the coupled evolution of both a fabric tensor and a fourth-rank tensor might be reasonably accurate.</description><subject>Closures</subject><subject>Computer simulation</subject><subject>Condensed Matter</subject><subject>Connecting</subject><subject>Constitutive models</subject><subject>Contact stresses</subject><subject>Dynamics</subject><subject>Evolution</subject><subject>Interactions</subject><subject>JFM Papers</subject><subject>Lubrication</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Physics</subject><subject>Polymers</subject><subject>Rheology</subject><subject>Shear</subject><subject>Shear planes</subject><subject>Simulation</subject><subject>Soft Condensed Matter</subject><subject>Spheres</subject><subject>Spherical harmonics</subject><subject>Steady flow</subject><subject>Tensors</subject><subject>Ultrasonic testing</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkM9Kw0AQhxdRsFZvPsCCJ8HE_ZNkE2-lqBUKHtTzst2dtClJtu4mBd-mz9Inc2OLXjzNMHzzY-ZD6JqSmBIq7tdlEzNC85iJ4gSNaJIVkciS9BSNCGEsopSRc3Th_ZoQykkhRsi8rUA57GALzqsaVy020HrAvveb0FS29Q-4W8F-p1eqrqFdAu4sLtXCVRrD1tZ9FyDcWAO1x6WzzX7nq6av1c_cqE5dorNS1R6ujnWMPp4e36ezaP76_DKdzCPNedZFZar0glGTixQUAbHQuU5FSSlROQht8pwBSwuqEy5ErhdgSCYIp0XBdRl4Pka3h9xwqdy4qlHuS1pVydlkLocZoUWahM-3NLA3B3bj7GcPvpNr27s2nCcZI0We8SQZEu8OlHbWewflbywlcnAug3M5OJfBecDjI66a4Mcs4S_134VvHrqF0A</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>Chacko, Rahul N.</creator><creator>Mari, Romain</creator><creator>Fielding, Suzanne M.</creator><creator>Cates, Michael E.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3324-2976</orcidid><orcidid>https://orcid.org/0000-0002-5922-7731</orcidid><orcidid>https://orcid.org/0000-0001-7877-416X</orcidid></search><sort><creationdate>20180725</creationdate><title>Shear reversal in dense suspensions: the challenge to fabric evolution models from simulation data</title><author>Chacko, Rahul N. ; Mari, Romain ; Fielding, Suzanne M. ; Cates, Michael E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f5acb21d875ea0e7bc8c57f110a8e7cd882e2591c43778cbed067031993cf0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Closures</topic><topic>Computer simulation</topic><topic>Condensed Matter</topic><topic>Connecting</topic><topic>Constitutive models</topic><topic>Contact stresses</topic><topic>Dynamics</topic><topic>Evolution</topic><topic>Interactions</topic><topic>JFM Papers</topic><topic>Lubrication</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Physics</topic><topic>Polymers</topic><topic>Rheology</topic><topic>Shear</topic><topic>Shear planes</topic><topic>Simulation</topic><topic>Soft Condensed Matter</topic><topic>Spheres</topic><topic>Spherical harmonics</topic><topic>Steady flow</topic><topic>Tensors</topic><topic>Ultrasonic testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chacko, Rahul N.</creatorcontrib><creatorcontrib>Mari, Romain</creatorcontrib><creatorcontrib>Fielding, Suzanne M.</creatorcontrib><creatorcontrib>Cates, Michael E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chacko, Rahul N.</au><au>Mari, Romain</au><au>Fielding, Suzanne M.</au><au>Cates, Michael E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear reversal in dense suspensions: the challenge to fabric evolution models from simulation data</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2018-07-25</date><risdate>2018</risdate><volume>847</volume><spage>700</spage><epage>734</epage><pages>700-734</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Dense suspensions of hard particles are important as industrial or environmental materials (e.g. fresh concrete, food, paint or mud). To date, most constitutive models developed to describe them are, explicitly or effectively, ‘fabric evolution models’ based on: (i) a stress rule connecting the macroscopic stress to a second-rank microstructural fabric tensor
$\unicode[STIX]{x1D64C}$
; and (ii) a closed time-evolution equation for
$\unicode[STIX]{x1D64C}$
. In dense suspensions, most of the stress comes from short-ranged pairwise steric or lubrication interactions at near-contacts (suitably defined), so a natural choice for
$\unicode[STIX]{x1D64C}$
is the deviatoric second moment of the distribution
$P(\boldsymbol{p})$
of the near-contact orientations
$\boldsymbol{p}$
. Here we test directly whether a closed time-evolution equation for such a
$\unicode[STIX]{x1D64C}$
can exist, for the case of inertialess non-Brownian hard spheres in a Newtonian solvent. We perform extensive numerical simulations accessing high levels of detail for the evolution of
$P(\boldsymbol{p})$
under shear reversal, providing a stringent test for fabric evolution models. We consider a generic class of these models as defined by Hand (J. Fluid Mech., vol. 13, 1962, pp. 33–46) that assumes little as to the micromechanical behaviour of the suspension and is only constrained by frame indifference. Motivated by the smallness of microstructural anisotropies in the dense regime, we start with linear models in this class and successively consider those increasingly nonlinear in
$\unicode[STIX]{x1D64C}$
. Based on these results, we suggest that no closed fabric evolution model properly describes the dynamics of the fabric tensor under reversal. We attribute this to the fact that, while a second-rank tensor captures reasonably well the microstructure in steady flows, it gives a poor description during significant parts of the microstructural evolution following shear reversal. Specifically, the truncation of
$P(\boldsymbol{p})$
at second spherical harmonic (or second-rank tensor) level describes ellipsoidal distributions of near-contact orientations, whereas on reversal we observe distributions that are markedly four-lobed; moreover,
${\dot{P}}(\boldsymbol{p})$
has oblique axes, not collinear with those of
$\unicode[STIX]{x1D64C}$
in the shear plane. This structure probably precludes any adequate closure at second-rank level. Instead, our numerical data suggest that closures involving the coupled evolution of both a fabric tensor and a fourth-rank tensor might be reasonably accurate.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2018.279</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-3324-2976</orcidid><orcidid>https://orcid.org/0000-0002-5922-7731</orcidid><orcidid>https://orcid.org/0000-0001-7877-416X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2018-07, Vol.847, p.700-734 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01954130v1 |
source | Cambridge Journals Online |
subjects | Closures Computer simulation Condensed Matter Connecting Constitutive models Contact stresses Dynamics Evolution Interactions JFM Papers Lubrication Mathematical analysis Mathematical models Microstructure Physics Polymers Rheology Shear Shear planes Simulation Soft Condensed Matter Spheres Spherical harmonics Steady flow Tensors Ultrasonic testing |
title | Shear reversal in dense suspensions: the challenge to fabric evolution models from simulation data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20reversal%20in%20dense%20suspensions:%20the%C2%A0challenge%20to%20fabric%20evolution%20models%20from%C2%A0simulation%20data&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Chacko,%20Rahul%20N.&rft.date=2018-07-25&rft.volume=847&rft.spage=700&rft.epage=734&rft.pages=700-734&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2018.279&rft_dat=%3Cproquest_hal_p%3E2209863447%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-f5acb21d875ea0e7bc8c57f110a8e7cd882e2591c43778cbed067031993cf0e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2209863447&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2018_279&rfr_iscdi=true |