Loading…

Molecular engineering of logic gate types by module rearrangement in 'Pourbaix Sensors': the effect of excited-state electric fields

Two types of fluorescent logic gates are accessed from two different arrangements of the same modular components, one as an AND logic gate (1) and the other as a PASS 0 logic gate (2). The logic gates were designed with an 'electron-donor-spacer1-fluorophore-spacer2-receptor' format and de...

Full description

Saved in:
Bibliographic Details
Published in:Organic & biomolecular chemistry 2018, Vol.16 (34), p.6195-6201
Main Authors: Spiteri, Jake C, Denisov, Sergey A, Jonusauskas, Gediminas, Klejna, Sylwia, Szaciłowski, Konrad, McClenaghan, Nathan D, Magri, David C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two types of fluorescent logic gates are accessed from two different arrangements of the same modular components, one as an AND logic gate (1) and the other as a PASS 0 logic gate (2). The logic gates were designed with an 'electron-donor-spacer1-fluorophore-spacer2-receptor' format and demonstrated in 1 : 1 (v/v) methanol/water. The molecules consist of ferrocene as the electron donor, 4-aminonaphthalimide as the fluorophore and a tertiary alkylamine as the receptor. In the presence of high H+ and Fe3+ levels, regioisomers 1a and 1b switch 'on' as AND logic gates with fluorescence enhancement ratios of 16-fold and 10-fold, respectively, while regioisomers 2a and 2b are functionally dormant, exhibiting no fluorescence switching. The PASS 0 logic of 2a and 2b results from the transfer of an electron from the excited state fluorophore to the ferrocenium unit under oxidising conditions as predicted by DFT calculations. Time-resolved fluorescence spectroscopy provided lifetimes of 8.3 ns and 8.1 ns for 1a and 1b, respectively. The transient signal recovery rate of 1b is ∼10 ps while that of 2b is considerably longer on the nanosecond timescale. The divergent logic attributes of 1 and 2 highlight the importance of field effects and opens up a new approach for regulating logic-based molecules.
ISSN:1477-0520
1477-0539
DOI:10.1039/c8ob00485d