Loading…

Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids

We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Mechanik 2019-07, Vol.99 (7), p.n/a
Main Author: Gouin, Henri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3
cites cdi_FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3
container_end_page n/a
container_issue 7
container_start_page
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 99
creator Gouin, Henri
description We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity. We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity.
doi_str_mv 10.1002/zamm.201800188
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01956138v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250991697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMkdiYkixndixx6oCitSKAVhYLDexqau4CXZCFSYegWfkSXAIKiPD-c7n7z-dfwDOEZwgCPHVu7R2giFiMAQ7ACNEMIrTcDsEIwjTNMaYZsfgxPsNDF2OkhFYPnTWqsaZPNKVs74_o3VXK7eqSpN_fXzW0smfOvKdb1RAKh3ZtmxMeHxxsjBq20S6bE3hT8GRlqVXZ795DJ5urh9n83hxf3s3my7iPOGIxZwSqmWRash1RliGYaF4oXOKWIGZUoyuIKaawizJE00kYURpidMUJwRrKZMxuBzmrmUpamesdJ2opBHz6UL0vfA7QlHC3lBgLwa2dtVrq3wjNlXrtmE9gTGBnCPKs0BNBip3lfdO6f1YBEVvr-jtFXt7g4APgp0pVfcPLZ6ny-Wf9htxrICd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250991697</pqid></control><display><type>article</type><title>Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Gouin, Henri</creator><creatorcontrib>Gouin, Henri</creatorcontrib><description>We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity. We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201800188</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>76A02 ; 76E30 ; 76M30 ; Analysis of PDEs ; Density ; dispersive equations ; Divergence ; Entropy ; equation of energy ; Equations of motion ; Fluid mechanics ; Fluids ; hermitian‐symmetric systems ; Mathematical analysis ; Mathematical Physics ; Mathematics ; Mechanics ; multi‐gradient fluids ; Physics</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2019-07, Vol.99 (7), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3</citedby><cites>FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3</cites><orcidid>0000-0003-4088-1386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01956138$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouin, Henri</creatorcontrib><title>Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity. We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity.</description><subject>76A02</subject><subject>76E30</subject><subject>76M30</subject><subject>Analysis of PDEs</subject><subject>Density</subject><subject>dispersive equations</subject><subject>Divergence</subject><subject>Entropy</subject><subject>equation of energy</subject><subject>Equations of motion</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>hermitian‐symmetric systems</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>multi‐gradient fluids</subject><subject>Physics</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMkdiYkixndixx6oCitSKAVhYLDexqau4CXZCFSYegWfkSXAIKiPD-c7n7z-dfwDOEZwgCPHVu7R2giFiMAQ7ACNEMIrTcDsEIwjTNMaYZsfgxPsNDF2OkhFYPnTWqsaZPNKVs74_o3VXK7eqSpN_fXzW0smfOvKdb1RAKh3ZtmxMeHxxsjBq20S6bE3hT8GRlqVXZ795DJ5urh9n83hxf3s3my7iPOGIxZwSqmWRash1RliGYaF4oXOKWIGZUoyuIKaawizJE00kYURpidMUJwRrKZMxuBzmrmUpamesdJ2opBHz6UL0vfA7QlHC3lBgLwa2dtVrq3wjNlXrtmE9gTGBnCPKs0BNBip3lfdO6f1YBEVvr-jtFXt7g4APgp0pVfcPLZ6ny-Wf9htxrICd</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Gouin, Henri</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4088-1386</orcidid></search><sort><creationdate>201907</creationdate><title>Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids</title><author>Gouin, Henri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>76A02</topic><topic>76E30</topic><topic>76M30</topic><topic>Analysis of PDEs</topic><topic>Density</topic><topic>dispersive equations</topic><topic>Divergence</topic><topic>Entropy</topic><topic>equation of energy</topic><topic>Equations of motion</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>hermitian‐symmetric systems</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>multi‐gradient fluids</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouin, Henri</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouin, Henri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2019-07</date><risdate>2019</risdate><volume>99</volume><issue>7</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity. We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.201800188</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4088-1386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2019-07, Vol.99 (7), p.n/a
issn 0044-2267
1521-4001
language eng
recordid cdi_hal_primary_oai_HAL_hal_01956138v1
source Wiley-Blackwell Read & Publish Collection
subjects 76A02
76E30
76M30
Analysis of PDEs
Density
dispersive equations
Divergence
Entropy
equation of energy
Equations of motion
Fluid mechanics
Fluids
hermitian‐symmetric systems
Mathematical analysis
Mathematical Physics
Mathematics
Mechanics
multi‐gradient fluids
Physics
title Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetric%20forms%20for%20hyperbolic%E2%80%90parabolic%20systems%20of%20multi%E2%80%90gradient%20fluids&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Gouin,%20Henri&rft.date=2019-07&rft.volume=99&rft.issue=7&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201800188&rft_dat=%3Cproquest_hal_p%3E2250991697%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250991697&rft_id=info:pmid/&rfr_iscdi=true