Loading…
Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids
We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations...
Saved in:
Published in: | Zeitschrift für angewandte Mathematik und Mechanik 2019-07, Vol.99 (7), p.n/a |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3 |
container_end_page | n/a |
container_issue | 7 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 99 |
creator | Gouin, Henri |
description | We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity.
We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity. |
doi_str_mv | 10.1002/zamm.201800188 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01956138v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250991697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMkdiYkixndixx6oCitSKAVhYLDexqau4CXZCFSYegWfkSXAIKiPD-c7n7z-dfwDOEZwgCPHVu7R2giFiMAQ7ACNEMIrTcDsEIwjTNMaYZsfgxPsNDF2OkhFYPnTWqsaZPNKVs74_o3VXK7eqSpN_fXzW0smfOvKdb1RAKh3ZtmxMeHxxsjBq20S6bE3hT8GRlqVXZ795DJ5urh9n83hxf3s3my7iPOGIxZwSqmWRash1RliGYaF4oXOKWIGZUoyuIKaawizJE00kYURpidMUJwRrKZMxuBzmrmUpamesdJ2opBHz6UL0vfA7QlHC3lBgLwa2dtVrq3wjNlXrtmE9gTGBnCPKs0BNBip3lfdO6f1YBEVvr-jtFXt7g4APgp0pVfcPLZ6ny-Wf9htxrICd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250991697</pqid></control><display><type>article</type><title>Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Gouin, Henri</creator><creatorcontrib>Gouin, Henri</creatorcontrib><description>We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity.
We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201800188</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>76A02 ; 76E30 ; 76M30 ; Analysis of PDEs ; Density ; dispersive equations ; Divergence ; Entropy ; equation of energy ; Equations of motion ; Fluid mechanics ; Fluids ; hermitian‐symmetric systems ; Mathematical analysis ; Mathematical Physics ; Mathematics ; Mechanics ; multi‐gradient fluids ; Physics</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2019-07, Vol.99 (7), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3</citedby><cites>FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3</cites><orcidid>0000-0003-4088-1386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01956138$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouin, Henri</creatorcontrib><title>Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity.
We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity.</description><subject>76A02</subject><subject>76E30</subject><subject>76M30</subject><subject>Analysis of PDEs</subject><subject>Density</subject><subject>dispersive equations</subject><subject>Divergence</subject><subject>Entropy</subject><subject>equation of energy</subject><subject>Equations of motion</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>hermitian‐symmetric systems</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>multi‐gradient fluids</subject><subject>Physics</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMkdiYkixndixx6oCitSKAVhYLDexqau4CXZCFSYegWfkSXAIKiPD-c7n7z-dfwDOEZwgCPHVu7R2giFiMAQ7ACNEMIrTcDsEIwjTNMaYZsfgxPsNDF2OkhFYPnTWqsaZPNKVs74_o3VXK7eqSpN_fXzW0smfOvKdb1RAKh3ZtmxMeHxxsjBq20S6bE3hT8GRlqVXZ795DJ5urh9n83hxf3s3my7iPOGIxZwSqmWRash1RliGYaF4oXOKWIGZUoyuIKaawizJE00kYURpidMUJwRrKZMxuBzmrmUpamesdJ2opBHz6UL0vfA7QlHC3lBgLwa2dtVrq3wjNlXrtmE9gTGBnCPKs0BNBip3lfdO6f1YBEVvr-jtFXt7g4APgp0pVfcPLZ6ny-Wf9htxrICd</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Gouin, Henri</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4088-1386</orcidid></search><sort><creationdate>201907</creationdate><title>Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids</title><author>Gouin, Henri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>76A02</topic><topic>76E30</topic><topic>76M30</topic><topic>Analysis of PDEs</topic><topic>Density</topic><topic>dispersive equations</topic><topic>Divergence</topic><topic>Entropy</topic><topic>equation of energy</topic><topic>Equations of motion</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>hermitian‐symmetric systems</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>multi‐gradient fluids</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouin, Henri</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouin, Henri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2019-07</date><risdate>2019</risdate><volume>99</volume><issue>7</issue><epage>n/a</epage><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity.
We consider multi‐gradient fluids endowed with a volume internal‐energy that is a function of mass density, volume entropy and their successive gradients. We obtain a thermodynamic form of the equation of motion and an equation of energy compatible with the two laws of thermodynamics. The equations of multi‐gradient fluids belong to the class of dispersive systems. In the conservative case, we can replace the set of equations by a quasi‐linear system written in a divergence form. Near an equilibrium position, we obtain a Hermitian‐symmetric system written in the form of Godunov's systems. Equilibrium positions are stable when the total volume energy of the fluid is a convex function of the conjugated variables ‐ called the main field ‐ of mass density, volume entropy, their successive gradients and velocity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.201800188</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4088-1386</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2019-07, Vol.99 (7), p.n/a |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01956138v1 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 76A02 76E30 76M30 Analysis of PDEs Density dispersive equations Divergence Entropy equation of energy Equations of motion Fluid mechanics Fluids hermitian‐symmetric systems Mathematical analysis Mathematical Physics Mathematics Mechanics multi‐gradient fluids Physics |
title | Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetric%20forms%20for%20hyperbolic%E2%80%90parabolic%20systems%20of%20multi%E2%80%90gradient%20fluids&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Gouin,%20Henri&rft.date=2019-07&rft.volume=99&rft.issue=7&rft.epage=n/a&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201800188&rft_dat=%3Cproquest_hal_p%3E2250991697%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3918-9656fad4f09f758720de9dfc618d28ee86b026f6073c3f5a585efa2442352faa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250991697&rft_id=info:pmid/&rfr_iscdi=true |