Loading…
Desorption Electrospray Ionization Mass Spectrometry of Glycosaminoglycans and Their Protein Noncovalent Complex
Glycosaminoglycans heparin and heparan sulfate are biologically active polysulfated carbohydrates that are among the most challenging biopolymers with regards to their structural analysis and functional assessment. Fragmentation of oligosaccharides and sulfate loss are important hindrance to their a...
Saved in:
Published in: | Analytical chemistry (Washington) 2010-11, Vol.82 (22), p.9225-9233 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glycosaminoglycans heparin and heparan sulfate are biologically active polysulfated carbohydrates that are among the most challenging biopolymers with regards to their structural analysis and functional assessment. Fragmentation of oligosaccharides and sulfate loss are important hindrance to their analysis by mass spectrometry (MS), requiring thus soft ionization methods. The recently introduced soft ionization method desorption electrospray ionization (DESI) has been applied here to heparin and heparan sulfate oligosaccharides, showing that DESI-MS is well suited for the detection of such fragile biomolecules in their intact form. Characterization of complicated oligosaccharides such as synthetic heparin octadecasulfated dodecasaccharide was successfully achieved. The use of water for a spray solvent instead of denaturing organic solvents allowed the first DESI-MS detection of noncovalent biomolecular complexes between heparin oligosaccharides and the chemokine Stromal Cell-derived Factor-1. The hyphenation of the DESI ion source with the high-resolution LTQ-Orbitrap MS analyzer led to high accuracy of mass measurement and enabled unambiguous determination of the protein-bound sulfated oligosaccharide. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac1016198 |