Loading…

Analytical optimization of intermediate band systems: Achieving the best of two worlds

Lagrange multipliers provide a powerful framework to devise the optimization of systems under constraints. It can be especially useful in the context of photovoltaics, where electrical or structural continuity relations impose connections between quantities, such as current matching between the diff...

Full description

Saved in:
Bibliographic Details
Published in:Progress in photovoltaics 2018-10, Vol.26 (10), p.800-807
Main Authors: Suchet, Daniel, Delamarre, Amaury, Cavassilas, Nicolas, Jehl, Zacharie, Okada, Yoshitaka, Sugiyama, Masakazu, Guillemoles, Jean‐Francois
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3660-a577a189fbe578e714916ad6b9e96426e06a07e82ad07a3be1e791d4ab34039e3
cites cdi_FETCH-LOGICAL-c3660-a577a189fbe578e714916ad6b9e96426e06a07e82ad07a3be1e791d4ab34039e3
container_end_page 807
container_issue 10
container_start_page 800
container_title Progress in photovoltaics
container_volume 26
creator Suchet, Daniel
Delamarre, Amaury
Cavassilas, Nicolas
Jehl, Zacharie
Okada, Yoshitaka
Sugiyama, Masakazu
Guillemoles, Jean‐Francois
description Lagrange multipliers provide a powerful framework to devise the optimization of systems under constraints. It can be especially useful in the context of photovoltaics, where electrical or structural continuity relations impose connections between quantities, such as current matching between the different subcells of tandem devices. In this work, we apply this method to Intermediate band solar cell, an advanced concept for solar energy conversion in which 2 low‐energy photons can promote an electron to the conduction band through a so‐called intermediate band. We demonstrate that an intermediate band solar cell under solar spectrum cannot meet voltage preservation and current matching at the same time. By contrast, we show that the implementation of an energy shift (electronic ratchet) in any of the bands lifts one of the constraints set on the system and allows those 2 criteria to be filled simultaneously. Additional insights are provided by the numerical study of the short‐circuit current and fill factor of the systems at stake, which show that a system with ratchet benefits from the same current increase as a standard intermediate band solar cell (same short‐circuit current), while maintaining I‐V properties of a single junction (same open‐voltage circuit, same fill factor). Using Lagrange multipliers, we study analytically the role of the electronic ratchet in Intermediate Band Solar Cells. The ratchet enables the system to preserve voltage while matching currents transiting through the intermediate band. This allows the system to benefit from the same current increase as a standard IBSC, while keeping the same open‐circuit voltage and fill‐factor as a standard single junction.
doi_str_mv 10.1002/pip.3020
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01972817v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099251259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3660-a577a189fbe578e714916ad6b9e96426e06a07e82ad07a3be1e791d4ab34039e3</originalsourceid><addsrcrecordid>eNp1kFFLwzAQgIsoOKfgTwj4og-dSdomjW9D1A0G7kHFt5C2V5fRNjXJNuqvt7Xim0933H133H1BcEnwjGBMb1vdziJM8VEwIViIkCTi_XjIGQ25EMlpcObcFmPCU8Emwdu8UVXnda4qZFqva_2lvDYNMiXSjQdbQ6GVB5SppkCucx5qd4fm-UbDXjcfyG_6Hjg_DPiDQQdjq8KdByelqhxc_MZp8Pr48HK_CFfPT8v7-SrMI8ZwqBLOFUlFmUHCU-AkFoSpgmUCBIspA8wU5pBSVWCuogwIcEGKWGVRjCMB0TS4GfduVCVbq2tlO2mUlov5Sg41TASnKeF70rNXI9ta87nrT5Zbs7P9-07S3hRNCE1ET12PVG6NcxbKv7UEy8Gw7A3LwXCPhiN60BV0_3JyvVz_8N-ZvHvF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099251259</pqid></control><display><type>article</type><title>Analytical optimization of intermediate band systems: Achieving the best of two worlds</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Suchet, Daniel ; Delamarre, Amaury ; Cavassilas, Nicolas ; Jehl, Zacharie ; Okada, Yoshitaka ; Sugiyama, Masakazu ; Guillemoles, Jean‐Francois</creator><creatorcontrib>Suchet, Daniel ; Delamarre, Amaury ; Cavassilas, Nicolas ; Jehl, Zacharie ; Okada, Yoshitaka ; Sugiyama, Masakazu ; Guillemoles, Jean‐Francois</creatorcontrib><description>Lagrange multipliers provide a powerful framework to devise the optimization of systems under constraints. It can be especially useful in the context of photovoltaics, where electrical or structural continuity relations impose connections between quantities, such as current matching between the different subcells of tandem devices. In this work, we apply this method to Intermediate band solar cell, an advanced concept for solar energy conversion in which 2 low‐energy photons can promote an electron to the conduction band through a so‐called intermediate band. We demonstrate that an intermediate band solar cell under solar spectrum cannot meet voltage preservation and current matching at the same time. By contrast, we show that the implementation of an energy shift (electronic ratchet) in any of the bands lifts one of the constraints set on the system and allows those 2 criteria to be filled simultaneously. Additional insights are provided by the numerical study of the short‐circuit current and fill factor of the systems at stake, which show that a system with ratchet benefits from the same current increase as a standard intermediate band solar cell (same short‐circuit current), while maintaining I‐V properties of a single junction (same open‐voltage circuit, same fill factor). Using Lagrange multipliers, we study analytically the role of the electronic ratchet in Intermediate Band Solar Cells. The ratchet enables the system to preserve voltage while matching currents transiting through the intermediate band. This allows the system to benefit from the same current increase as a standard IBSC, while keeping the same open‐circuit voltage and fill‐factor as a standard single junction.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.3020</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Circuits ; Conduction bands ; Electric potential ; electronic ratchet ; Engineering Sciences ; intermediate band solar cell ; Lagrange multiplier ; Lifts ; Matching ; Optimization ; Photons ; Photovoltaic cells ; Physics ; Silicon wafers ; Solar cells ; Solar energy conversion</subject><ispartof>Progress in photovoltaics, 2018-10, Vol.26 (10), p.800-807</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3660-a577a189fbe578e714916ad6b9e96426e06a07e82ad07a3be1e791d4ab34039e3</citedby><cites>FETCH-LOGICAL-c3660-a577a189fbe578e714916ad6b9e96426e06a07e82ad07a3be1e791d4ab34039e3</cites><orcidid>0000-0002-4034-1016 ; 0000-0003-1460-2478 ; 0000-0003-0114-8624 ; 0000-0002-1329-8438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01972817$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Suchet, Daniel</creatorcontrib><creatorcontrib>Delamarre, Amaury</creatorcontrib><creatorcontrib>Cavassilas, Nicolas</creatorcontrib><creatorcontrib>Jehl, Zacharie</creatorcontrib><creatorcontrib>Okada, Yoshitaka</creatorcontrib><creatorcontrib>Sugiyama, Masakazu</creatorcontrib><creatorcontrib>Guillemoles, Jean‐Francois</creatorcontrib><title>Analytical optimization of intermediate band systems: Achieving the best of two worlds</title><title>Progress in photovoltaics</title><description>Lagrange multipliers provide a powerful framework to devise the optimization of systems under constraints. It can be especially useful in the context of photovoltaics, where electrical or structural continuity relations impose connections between quantities, such as current matching between the different subcells of tandem devices. In this work, we apply this method to Intermediate band solar cell, an advanced concept for solar energy conversion in which 2 low‐energy photons can promote an electron to the conduction band through a so‐called intermediate band. We demonstrate that an intermediate band solar cell under solar spectrum cannot meet voltage preservation and current matching at the same time. By contrast, we show that the implementation of an energy shift (electronic ratchet) in any of the bands lifts one of the constraints set on the system and allows those 2 criteria to be filled simultaneously. Additional insights are provided by the numerical study of the short‐circuit current and fill factor of the systems at stake, which show that a system with ratchet benefits from the same current increase as a standard intermediate band solar cell (same short‐circuit current), while maintaining I‐V properties of a single junction (same open‐voltage circuit, same fill factor). Using Lagrange multipliers, we study analytically the role of the electronic ratchet in Intermediate Band Solar Cells. The ratchet enables the system to preserve voltage while matching currents transiting through the intermediate band. This allows the system to benefit from the same current increase as a standard IBSC, while keeping the same open‐circuit voltage and fill‐factor as a standard single junction.</description><subject>Circuits</subject><subject>Conduction bands</subject><subject>Electric potential</subject><subject>electronic ratchet</subject><subject>Engineering Sciences</subject><subject>intermediate band solar cell</subject><subject>Lagrange multiplier</subject><subject>Lifts</subject><subject>Matching</subject><subject>Optimization</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Solar energy conversion</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kFFLwzAQgIsoOKfgTwj4og-dSdomjW9D1A0G7kHFt5C2V5fRNjXJNuqvt7Xim0933H133H1BcEnwjGBMb1vdziJM8VEwIViIkCTi_XjIGQ25EMlpcObcFmPCU8Emwdu8UVXnda4qZFqva_2lvDYNMiXSjQdbQ6GVB5SppkCucx5qd4fm-UbDXjcfyG_6Hjg_DPiDQQdjq8KdByelqhxc_MZp8Pr48HK_CFfPT8v7-SrMI8ZwqBLOFUlFmUHCU-AkFoSpgmUCBIspA8wU5pBSVWCuogwIcEGKWGVRjCMB0TS4GfduVCVbq2tlO2mUlov5Sg41TASnKeF70rNXI9ta87nrT5Zbs7P9-07S3hRNCE1ET12PVG6NcxbKv7UEy8Gw7A3LwXCPhiN60BV0_3JyvVz_8N-ZvHvF</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Suchet, Daniel</creator><creator>Delamarre, Amaury</creator><creator>Cavassilas, Nicolas</creator><creator>Jehl, Zacharie</creator><creator>Okada, Yoshitaka</creator><creator>Sugiyama, Masakazu</creator><creator>Guillemoles, Jean‐Francois</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4034-1016</orcidid><orcidid>https://orcid.org/0000-0003-1460-2478</orcidid><orcidid>https://orcid.org/0000-0003-0114-8624</orcidid><orcidid>https://orcid.org/0000-0002-1329-8438</orcidid></search><sort><creationdate>201810</creationdate><title>Analytical optimization of intermediate band systems: Achieving the best of two worlds</title><author>Suchet, Daniel ; Delamarre, Amaury ; Cavassilas, Nicolas ; Jehl, Zacharie ; Okada, Yoshitaka ; Sugiyama, Masakazu ; Guillemoles, Jean‐Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3660-a577a189fbe578e714916ad6b9e96426e06a07e82ad07a3be1e791d4ab34039e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Circuits</topic><topic>Conduction bands</topic><topic>Electric potential</topic><topic>electronic ratchet</topic><topic>Engineering Sciences</topic><topic>intermediate band solar cell</topic><topic>Lagrange multiplier</topic><topic>Lifts</topic><topic>Matching</topic><topic>Optimization</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Solar energy conversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suchet, Daniel</creatorcontrib><creatorcontrib>Delamarre, Amaury</creatorcontrib><creatorcontrib>Cavassilas, Nicolas</creatorcontrib><creatorcontrib>Jehl, Zacharie</creatorcontrib><creatorcontrib>Okada, Yoshitaka</creatorcontrib><creatorcontrib>Sugiyama, Masakazu</creatorcontrib><creatorcontrib>Guillemoles, Jean‐Francois</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suchet, Daniel</au><au>Delamarre, Amaury</au><au>Cavassilas, Nicolas</au><au>Jehl, Zacharie</au><au>Okada, Yoshitaka</au><au>Sugiyama, Masakazu</au><au>Guillemoles, Jean‐Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical optimization of intermediate band systems: Achieving the best of two worlds</atitle><jtitle>Progress in photovoltaics</jtitle><date>2018-10</date><risdate>2018</risdate><volume>26</volume><issue>10</issue><spage>800</spage><epage>807</epage><pages>800-807</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><abstract>Lagrange multipliers provide a powerful framework to devise the optimization of systems under constraints. It can be especially useful in the context of photovoltaics, where electrical or structural continuity relations impose connections between quantities, such as current matching between the different subcells of tandem devices. In this work, we apply this method to Intermediate band solar cell, an advanced concept for solar energy conversion in which 2 low‐energy photons can promote an electron to the conduction band through a so‐called intermediate band. We demonstrate that an intermediate band solar cell under solar spectrum cannot meet voltage preservation and current matching at the same time. By contrast, we show that the implementation of an energy shift (electronic ratchet) in any of the bands lifts one of the constraints set on the system and allows those 2 criteria to be filled simultaneously. Additional insights are provided by the numerical study of the short‐circuit current and fill factor of the systems at stake, which show that a system with ratchet benefits from the same current increase as a standard intermediate band solar cell (same short‐circuit current), while maintaining I‐V properties of a single junction (same open‐voltage circuit, same fill factor). Using Lagrange multipliers, we study analytically the role of the electronic ratchet in Intermediate Band Solar Cells. The ratchet enables the system to preserve voltage while matching currents transiting through the intermediate band. This allows the system to benefit from the same current increase as a standard IBSC, while keeping the same open‐circuit voltage and fill‐factor as a standard single junction.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pip.3020</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4034-1016</orcidid><orcidid>https://orcid.org/0000-0003-1460-2478</orcidid><orcidid>https://orcid.org/0000-0003-0114-8624</orcidid><orcidid>https://orcid.org/0000-0002-1329-8438</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1062-7995
ispartof Progress in photovoltaics, 2018-10, Vol.26 (10), p.800-807
issn 1062-7995
1099-159X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01972817v1
source Wiley-Blackwell Read & Publish Collection
subjects Circuits
Conduction bands
Electric potential
electronic ratchet
Engineering Sciences
intermediate band solar cell
Lagrange multiplier
Lifts
Matching
Optimization
Photons
Photovoltaic cells
Physics
Silicon wafers
Solar cells
Solar energy conversion
title Analytical optimization of intermediate band systems: Achieving the best of two worlds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20optimization%20of%20intermediate%20band%20systems:%20Achieving%20the%20best%20of%20two%20worlds&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Suchet,%20Daniel&rft.date=2018-10&rft.volume=26&rft.issue=10&rft.spage=800&rft.epage=807&rft.pages=800-807&rft.issn=1062-7995&rft.eissn=1099-159X&rft_id=info:doi/10.1002/pip.3020&rft_dat=%3Cproquest_hal_p%3E2099251259%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3660-a577a189fbe578e714916ad6b9e96426e06a07e82ad07a3be1e791d4ab34039e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2099251259&rft_id=info:pmid/&rfr_iscdi=true