Loading…
Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics
The functionality of liquid–liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent progress involving ITIES modified with floating assemblies of g...
Saved in:
Published in: | Chemical reviews 2018-04, Vol.118 (7), p.3722-3751 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033 |
---|---|
cites | cdi_FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033 |
container_end_page | 3751 |
container_issue | 7 |
container_start_page | 3722 |
container_title | Chemical reviews |
container_volume | 118 |
creator | Scanlon, Micheál D Smirnov, Evgeny Stockmann, T. Jane Peljo, Pekka |
description | The functionality of liquid–liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent progress involving ITIES modified with floating assemblies of gold nanoparticles or “nanofilms”. Experimental methods to controllably modify liquid–liquid interfaces with gold nanofilms are detailed. Also, we outline an array of techniques to characterize these gold nanofilms in terms of their physiochemical properties (such as reflectivity, conductivity, catalytic activity, or plasmonic properties) and physical interfacial properties (for example, interparticle spacing and immersion depth at the interface). The ability of floating gold nanofilms to impact a diverse range of fields is demonstrated: in particular, redox electrocatalysis, surface-enhanced Raman spectroscopy (SERS) or surface plasmon resonance (SPR) based sensors, and electrovariable optical devices. Finally, perspectives on applications beyond the state-of-the-art are provided. |
doi_str_mv | 10.1021/acs.chemrev.7b00595 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01974503v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993006203</sourcerecordid><originalsourceid>FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhCZCQJTYgkal_ktjublQNbaURRfysrRvHaV058dTOjOiOR0DiDXkSPM10FizY2L7X3zm-1kHoNSVzShg9AZPm5sb20W7noiGkUtUTNKMVI0UtFXmKZoQQVbC6ro7Qi5Ruc1lVTDxHR0xxSXnJZ-jXefAt_gRD6JzvE4YRr9zdxrV_fv6eDvhyGG3swNh0ihcDXvY2XrvhGn_2MHYh9jgv-Ittww-89NaMMRgYwd8nlz48OK89pD4MzuCvdkgh5jYM7SO8heig8RZfrUdn0kv0rAOf7Kv9foy-f1x-O7soVlfnl2eLVQEVlWNRytaWshYNqyQRhnVUqLImNS-pEVTW-do2dVm1wBropKjLjitoW6EoBUk4P0bvJ98b8HodXQ_xXgdw-mKx0rseoUqUFeFbmtl3E7uO4W5j06h7l4z1HgYbNklTpTghNXuwffsPehs2ccg_0YwopYTMc2aKT5SJIaVou8MElOhduDqHq_fh6n24WfVm771petseNI9pZuBkAnbqw7v_s_wLzBmz7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099978794</pqid></control><display><type>article</type><title>Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Scanlon, Micheál D ; Smirnov, Evgeny ; Stockmann, T. Jane ; Peljo, Pekka</creator><creatorcontrib>Scanlon, Micheál D ; Smirnov, Evgeny ; Stockmann, T. Jane ; Peljo, Pekka</creatorcontrib><description>The functionality of liquid–liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent progress involving ITIES modified with floating assemblies of gold nanoparticles or “nanofilms”. Experimental methods to controllably modify liquid–liquid interfaces with gold nanofilms are detailed. Also, we outline an array of techniques to characterize these gold nanofilms in terms of their physiochemical properties (such as reflectivity, conductivity, catalytic activity, or plasmonic properties) and physical interfacial properties (for example, interparticle spacing and immersion depth at the interface). The ability of floating gold nanofilms to impact a diverse range of fields is demonstrated: in particular, redox electrocatalysis, surface-enhanced Raman spectroscopy (SERS) or surface plasmon resonance (SPR) based sensors, and electrovariable optical devices. Finally, perspectives on applications beyond the state-of-the-art are provided.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.7b00595</identifier><identifier>PMID: 29381343</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Assemblies ; Catalysis ; Catalytic activity ; Chemical Sciences ; Control methods ; Electrocatalysis ; Floating ; Gold ; Heat conductivity ; Interfacial properties ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Optics ; or physical chemistry ; Physiochemistry ; Raman spectroscopy ; Sensors ; Spectrum analysis ; Submerging ; Theoretical and</subject><ispartof>Chemical reviews, 2018-04, Vol.118 (7), p.3722-3751</ispartof><rights>Copyright American Chemical Society Apr 11, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033</citedby><cites>FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033</cites><orcidid>0000-0001-7951-7085 ; 0000-0001-7930-7758 ; 0000-0002-1229-2261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29381343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-paris.hal.science/hal-01974503$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Scanlon, Micheál D</creatorcontrib><creatorcontrib>Smirnov, Evgeny</creatorcontrib><creatorcontrib>Stockmann, T. Jane</creatorcontrib><creatorcontrib>Peljo, Pekka</creatorcontrib><title>Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>The functionality of liquid–liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent progress involving ITIES modified with floating assemblies of gold nanoparticles or “nanofilms”. Experimental methods to controllably modify liquid–liquid interfaces with gold nanofilms are detailed. Also, we outline an array of techniques to characterize these gold nanofilms in terms of their physiochemical properties (such as reflectivity, conductivity, catalytic activity, or plasmonic properties) and physical interfacial properties (for example, interparticle spacing and immersion depth at the interface). The ability of floating gold nanofilms to impact a diverse range of fields is demonstrated: in particular, redox electrocatalysis, surface-enhanced Raman spectroscopy (SERS) or surface plasmon resonance (SPR) based sensors, and electrovariable optical devices. Finally, perspectives on applications beyond the state-of-the-art are provided.</description><subject>Analytical chemistry</subject><subject>Assemblies</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemical Sciences</subject><subject>Control methods</subject><subject>Electrocatalysis</subject><subject>Floating</subject><subject>Gold</subject><subject>Heat conductivity</subject><subject>Interfacial properties</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optics</subject><subject>or physical chemistry</subject><subject>Physiochemistry</subject><subject>Raman spectroscopy</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Submerging</subject><subject>Theoretical and</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EokPhCZCQJTYgkal_ktjublQNbaURRfysrRvHaV058dTOjOiOR0DiDXkSPM10FizY2L7X3zm-1kHoNSVzShg9AZPm5sb20W7noiGkUtUTNKMVI0UtFXmKZoQQVbC6ro7Qi5Ruc1lVTDxHR0xxSXnJZ-jXefAt_gRD6JzvE4YRr9zdxrV_fv6eDvhyGG3swNh0ihcDXvY2XrvhGn_2MHYh9jgv-Ittww-89NaMMRgYwd8nlz48OK89pD4MzuCvdkgh5jYM7SO8heig8RZfrUdn0kv0rAOf7Kv9foy-f1x-O7soVlfnl2eLVQEVlWNRytaWshYNqyQRhnVUqLImNS-pEVTW-do2dVm1wBropKjLjitoW6EoBUk4P0bvJ98b8HodXQ_xXgdw-mKx0rseoUqUFeFbmtl3E7uO4W5j06h7l4z1HgYbNklTpTghNXuwffsPehs2ccg_0YwopYTMc2aKT5SJIaVou8MElOhduDqHq_fh6n24WfVm771petseNI9pZuBkAnbqw7v_s_wLzBmz7g</recordid><startdate>20180411</startdate><enddate>20180411</enddate><creator>Scanlon, Micheál D</creator><creator>Smirnov, Evgeny</creator><creator>Stockmann, T. Jane</creator><creator>Peljo, Pekka</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7951-7085</orcidid><orcidid>https://orcid.org/0000-0001-7930-7758</orcidid><orcidid>https://orcid.org/0000-0002-1229-2261</orcidid></search><sort><creationdate>20180411</creationdate><title>Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics</title><author>Scanlon, Micheál D ; Smirnov, Evgeny ; Stockmann, T. Jane ; Peljo, Pekka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical chemistry</topic><topic>Assemblies</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemical Sciences</topic><topic>Control methods</topic><topic>Electrocatalysis</topic><topic>Floating</topic><topic>Gold</topic><topic>Heat conductivity</topic><topic>Interfacial properties</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optics</topic><topic>or physical chemistry</topic><topic>Physiochemistry</topic><topic>Raman spectroscopy</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Submerging</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scanlon, Micheál D</creatorcontrib><creatorcontrib>Smirnov, Evgeny</creatorcontrib><creatorcontrib>Stockmann, T. Jane</creatorcontrib><creatorcontrib>Peljo, Pekka</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scanlon, Micheál D</au><au>Smirnov, Evgeny</au><au>Stockmann, T. Jane</au><au>Peljo, Pekka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2018-04-11</date><risdate>2018</risdate><volume>118</volume><issue>7</issue><spage>3722</spage><epage>3751</epage><pages>3722-3751</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>The functionality of liquid–liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent progress involving ITIES modified with floating assemblies of gold nanoparticles or “nanofilms”. Experimental methods to controllably modify liquid–liquid interfaces with gold nanofilms are detailed. Also, we outline an array of techniques to characterize these gold nanofilms in terms of their physiochemical properties (such as reflectivity, conductivity, catalytic activity, or plasmonic properties) and physical interfacial properties (for example, interparticle spacing and immersion depth at the interface). The ability of floating gold nanofilms to impact a diverse range of fields is demonstrated: in particular, redox electrocatalysis, surface-enhanced Raman spectroscopy (SERS) or surface plasmon resonance (SPR) based sensors, and electrovariable optical devices. Finally, perspectives on applications beyond the state-of-the-art are provided.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29381343</pmid><doi>10.1021/acs.chemrev.7b00595</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-7951-7085</orcidid><orcidid>https://orcid.org/0000-0001-7930-7758</orcidid><orcidid>https://orcid.org/0000-0002-1229-2261</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2018-04, Vol.118 (7), p.3722-3751 |
issn | 0009-2665 1520-6890 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01974503v1 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Analytical chemistry Assemblies Catalysis Catalytic activity Chemical Sciences Control methods Electrocatalysis Floating Gold Heat conductivity Interfacial properties Nanomaterials Nanoparticles Nanotechnology Optics or physical chemistry Physiochemistry Raman spectroscopy Sensors Spectrum analysis Submerging Theoretical and |
title | Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold%20Nanofilms%20at%20Liquid%E2%80%93Liquid%20Interfaces:%20An%20Emerging%20Platform%20for%20Redox%20Electrocatalysis,%20Nanoplasmonic%20Sensors,%20and%20Electrovariable%20Optics&rft.jtitle=Chemical%20reviews&rft.au=Scanlon,%20Michea%CC%81l%20D&rft.date=2018-04-11&rft.volume=118&rft.issue=7&rft.spage=3722&rft.epage=3751&rft.pages=3722-3751&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.7b00595&rft_dat=%3Cproquest_hal_p%3E1993006203%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2099978794&rft_id=info:pmid/29381343&rfr_iscdi=true |