Loading…

Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics

The functionality of liquid–liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent progress involving ITIES modified with floating assemblies of g...

Full description

Saved in:
Bibliographic Details
Published in:Chemical reviews 2018-04, Vol.118 (7), p.3722-3751
Main Authors: Scanlon, Micheál D, Smirnov, Evgeny, Stockmann, T. Jane, Peljo, Pekka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033
cites cdi_FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033
container_end_page 3751
container_issue 7
container_start_page 3722
container_title Chemical reviews
container_volume 118
creator Scanlon, Micheál D
Smirnov, Evgeny
Stockmann, T. Jane
Peljo, Pekka
description The functionality of liquid–liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent progress involving ITIES modified with floating assemblies of gold nanoparticles or “nanofilms”. Experimental methods to controllably modify liquid–liquid interfaces with gold nanofilms are detailed. Also, we outline an array of techniques to characterize these gold nanofilms in terms of their physiochemical properties (such as reflectivity, conductivity, catalytic activity, or plasmonic properties) and physical interfacial properties (for example, interparticle spacing and immersion depth at the interface). The ability of floating gold nanofilms to impact a diverse range of fields is demonstrated: in particular, redox electrocatalysis, surface-enhanced Raman spectroscopy (SERS) or surface plasmon resonance (SPR) based sensors, and electrovariable optical devices. Finally, perspectives on applications beyond the state-of-the-art are provided.
doi_str_mv 10.1021/acs.chemrev.7b00595
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01974503v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993006203</sourcerecordid><originalsourceid>FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhCZCQJTYgkal_ktjublQNbaURRfysrRvHaV058dTOjOiOR0DiDXkSPM10FizY2L7X3zm-1kHoNSVzShg9AZPm5sb20W7noiGkUtUTNKMVI0UtFXmKZoQQVbC6ro7Qi5Ruc1lVTDxHR0xxSXnJZ-jXefAt_gRD6JzvE4YRr9zdxrV_fv6eDvhyGG3swNh0ihcDXvY2XrvhGn_2MHYh9jgv-Ittww-89NaMMRgYwd8nlz48OK89pD4MzuCvdkgh5jYM7SO8heig8RZfrUdn0kv0rAOf7Kv9foy-f1x-O7soVlfnl2eLVQEVlWNRytaWshYNqyQRhnVUqLImNS-pEVTW-do2dVm1wBropKjLjitoW6EoBUk4P0bvJ98b8HodXQ_xXgdw-mKx0rseoUqUFeFbmtl3E7uO4W5j06h7l4z1HgYbNklTpTghNXuwffsPehs2ccg_0YwopYTMc2aKT5SJIaVou8MElOhduDqHq_fh6n24WfVm771petseNI9pZuBkAnbqw7v_s_wLzBmz7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099978794</pqid></control><display><type>article</type><title>Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Scanlon, Micheál D ; Smirnov, Evgeny ; Stockmann, T. Jane ; Peljo, Pekka</creator><creatorcontrib>Scanlon, Micheál D ; Smirnov, Evgeny ; Stockmann, T. Jane ; Peljo, Pekka</creatorcontrib><description>The functionality of liquid–liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent progress involving ITIES modified with floating assemblies of gold nanoparticles or “nanofilms”. Experimental methods to controllably modify liquid–liquid interfaces with gold nanofilms are detailed. Also, we outline an array of techniques to characterize these gold nanofilms in terms of their physiochemical properties (such as reflectivity, conductivity, catalytic activity, or plasmonic properties) and physical interfacial properties (for example, interparticle spacing and immersion depth at the interface). The ability of floating gold nanofilms to impact a diverse range of fields is demonstrated: in particular, redox electrocatalysis, surface-enhanced Raman spectroscopy (SERS) or surface plasmon resonance (SPR) based sensors, and electrovariable optical devices. Finally, perspectives on applications beyond the state-of-the-art are provided.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.7b00595</identifier><identifier>PMID: 29381343</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Assemblies ; Catalysis ; Catalytic activity ; Chemical Sciences ; Control methods ; Electrocatalysis ; Floating ; Gold ; Heat conductivity ; Interfacial properties ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Optics ; or physical chemistry ; Physiochemistry ; Raman spectroscopy ; Sensors ; Spectrum analysis ; Submerging ; Theoretical and</subject><ispartof>Chemical reviews, 2018-04, Vol.118 (7), p.3722-3751</ispartof><rights>Copyright American Chemical Society Apr 11, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033</citedby><cites>FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033</cites><orcidid>0000-0001-7951-7085 ; 0000-0001-7930-7758 ; 0000-0002-1229-2261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29381343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-paris.hal.science/hal-01974503$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Scanlon, Micheál D</creatorcontrib><creatorcontrib>Smirnov, Evgeny</creatorcontrib><creatorcontrib>Stockmann, T. Jane</creatorcontrib><creatorcontrib>Peljo, Pekka</creatorcontrib><title>Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>The functionality of liquid–liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent progress involving ITIES modified with floating assemblies of gold nanoparticles or “nanofilms”. Experimental methods to controllably modify liquid–liquid interfaces with gold nanofilms are detailed. Also, we outline an array of techniques to characterize these gold nanofilms in terms of their physiochemical properties (such as reflectivity, conductivity, catalytic activity, or plasmonic properties) and physical interfacial properties (for example, interparticle spacing and immersion depth at the interface). The ability of floating gold nanofilms to impact a diverse range of fields is demonstrated: in particular, redox electrocatalysis, surface-enhanced Raman spectroscopy (SERS) or surface plasmon resonance (SPR) based sensors, and electrovariable optical devices. Finally, perspectives on applications beyond the state-of-the-art are provided.</description><subject>Analytical chemistry</subject><subject>Assemblies</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemical Sciences</subject><subject>Control methods</subject><subject>Electrocatalysis</subject><subject>Floating</subject><subject>Gold</subject><subject>Heat conductivity</subject><subject>Interfacial properties</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optics</subject><subject>or physical chemistry</subject><subject>Physiochemistry</subject><subject>Raman spectroscopy</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Submerging</subject><subject>Theoretical and</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EokPhCZCQJTYgkal_ktjublQNbaURRfysrRvHaV058dTOjOiOR0DiDXkSPM10FizY2L7X3zm-1kHoNSVzShg9AZPm5sb20W7noiGkUtUTNKMVI0UtFXmKZoQQVbC6ro7Qi5Ruc1lVTDxHR0xxSXnJZ-jXefAt_gRD6JzvE4YRr9zdxrV_fv6eDvhyGG3swNh0ihcDXvY2XrvhGn_2MHYh9jgv-Ittww-89NaMMRgYwd8nlz48OK89pD4MzuCvdkgh5jYM7SO8heig8RZfrUdn0kv0rAOf7Kv9foy-f1x-O7soVlfnl2eLVQEVlWNRytaWshYNqyQRhnVUqLImNS-pEVTW-do2dVm1wBropKjLjitoW6EoBUk4P0bvJ98b8HodXQ_xXgdw-mKx0rseoUqUFeFbmtl3E7uO4W5j06h7l4z1HgYbNklTpTghNXuwffsPehs2ccg_0YwopYTMc2aKT5SJIaVou8MElOhduDqHq_fh6n24WfVm771petseNI9pZuBkAnbqw7v_s_wLzBmz7g</recordid><startdate>20180411</startdate><enddate>20180411</enddate><creator>Scanlon, Micheál D</creator><creator>Smirnov, Evgeny</creator><creator>Stockmann, T. Jane</creator><creator>Peljo, Pekka</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7951-7085</orcidid><orcidid>https://orcid.org/0000-0001-7930-7758</orcidid><orcidid>https://orcid.org/0000-0002-1229-2261</orcidid></search><sort><creationdate>20180411</creationdate><title>Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics</title><author>Scanlon, Micheál D ; Smirnov, Evgeny ; Stockmann, T. Jane ; Peljo, Pekka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical chemistry</topic><topic>Assemblies</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemical Sciences</topic><topic>Control methods</topic><topic>Electrocatalysis</topic><topic>Floating</topic><topic>Gold</topic><topic>Heat conductivity</topic><topic>Interfacial properties</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optics</topic><topic>or physical chemistry</topic><topic>Physiochemistry</topic><topic>Raman spectroscopy</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Submerging</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scanlon, Micheál D</creatorcontrib><creatorcontrib>Smirnov, Evgeny</creatorcontrib><creatorcontrib>Stockmann, T. Jane</creatorcontrib><creatorcontrib>Peljo, Pekka</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scanlon, Micheál D</au><au>Smirnov, Evgeny</au><au>Stockmann, T. Jane</au><au>Peljo, Pekka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2018-04-11</date><risdate>2018</risdate><volume>118</volume><issue>7</issue><spage>3722</spage><epage>3751</epage><pages>3722-3751</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>The functionality of liquid–liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent progress involving ITIES modified with floating assemblies of gold nanoparticles or “nanofilms”. Experimental methods to controllably modify liquid–liquid interfaces with gold nanofilms are detailed. Also, we outline an array of techniques to characterize these gold nanofilms in terms of their physiochemical properties (such as reflectivity, conductivity, catalytic activity, or plasmonic properties) and physical interfacial properties (for example, interparticle spacing and immersion depth at the interface). The ability of floating gold nanofilms to impact a diverse range of fields is demonstrated: in particular, redox electrocatalysis, surface-enhanced Raman spectroscopy (SERS) or surface plasmon resonance (SPR) based sensors, and electrovariable optical devices. Finally, perspectives on applications beyond the state-of-the-art are provided.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29381343</pmid><doi>10.1021/acs.chemrev.7b00595</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-7951-7085</orcidid><orcidid>https://orcid.org/0000-0001-7930-7758</orcidid><orcidid>https://orcid.org/0000-0002-1229-2261</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2018-04, Vol.118 (7), p.3722-3751
issn 0009-2665
1520-6890
language eng
recordid cdi_hal_primary_oai_HAL_hal_01974503v1
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Analytical chemistry
Assemblies
Catalysis
Catalytic activity
Chemical Sciences
Control methods
Electrocatalysis
Floating
Gold
Heat conductivity
Interfacial properties
Nanomaterials
Nanoparticles
Nanotechnology
Optics
or physical chemistry
Physiochemistry
Raman spectroscopy
Sensors
Spectrum analysis
Submerging
Theoretical and
title Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold%20Nanofilms%20at%20Liquid%E2%80%93Liquid%20Interfaces:%20An%20Emerging%20Platform%20for%20Redox%20Electrocatalysis,%20Nanoplasmonic%20Sensors,%20and%20Electrovariable%20Optics&rft.jtitle=Chemical%20reviews&rft.au=Scanlon,%20Michea%CC%81l%20D&rft.date=2018-04-11&rft.volume=118&rft.issue=7&rft.spage=3722&rft.epage=3751&rft.pages=3722-3751&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.7b00595&rft_dat=%3Cproquest_hal_p%3E1993006203%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a518t-48de4867b25807c2f1794606341c71868deeb645da2baf8764f39add7911a8033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2099978794&rft_id=info:pmid/29381343&rfr_iscdi=true