Loading…

The seven sisters DANCe: IV. Bayesian hierarchical model

Context . The photometric and astrometric measurements of the Pleiades DANCe DR2 survey provide an excellent test case for the benchmarking of statistical tools aiming at the disentanglement and characterisation of nearby young open cluster (NYOC) stellar populations. Aims . We aim to develop, test,...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2018-09, Vol.617, p.A15
Main Authors: Olivares, J., Sarro, L. M., Moraux, E., Berihuete, A., Bouy, H., Hernández-Jiménez, S., Bertin, E., Galli, P. A. B., Huelamo, N., Bouvier, J., Barrado, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c233t-4ce21f2d92974265c90ff5d3214211a65cc272783c049ae79c5da870dd4fdc723
container_end_page
container_issue
container_start_page A15
container_title Astronomy and astrophysics (Berlin)
container_volume 617
creator Olivares, J.
Sarro, L. M.
Moraux, E.
Berihuete, A.
Bouy, H.
Hernández-Jiménez, S.
Bertin, E.
Galli, P. A. B.
Huelamo, N.
Bouvier, J.
Barrado, D.
description Context . The photometric and astrometric measurements of the Pleiades DANCe DR2 survey provide an excellent test case for the benchmarking of statistical tools aiming at the disentanglement and characterisation of nearby young open cluster (NYOC) stellar populations. Aims . We aim to develop, test, and characterise of a new statistical tool (intelligent system) for the sifting and analysis of NYOC populations. Methods . Using a Bayesian formalism, with this statistical tool we were able to obtain the posterior distributions of parameters governing the cluster model. It also used hierarchical bayesian models to establish weakly informative priors, and incorporates the treatment of missing values and non-homogeneous (heteroscedastic) observational uncertainties. Results . From simulations, we estimated that this statistical tool renders kinematic (proper motion) and photometric (luminosity) distributions of the cluster population with a contamination rate of 5.8 ± 0.2%. The luminosity distributions and present day mass function agree with the ones found in a recent study, on the completeness interval of the survey. At the probability threshold of maximum accuracy, the classifier recovers ≈90% of the recently published candidate members and finds 10% of new ones. Conclusions . A new statistical tool for the analysis of NYOC is introduced, tested, and characterised. Its comprehensive modelling of the data properties allows it to get rid of the biases present in previous works. In particular, those resulting from the use of only completely observed (non-missing) data and the assumption of homoskedastic uncertainties. Also, its Bayesian framework allows it to properly propagate observational uncertainties into membership probabilities and cluster velocity and luminosity distributions. Our results are in a general agreement with those from the literature, although we provide the most up-to-date and extended list of candidate members of the Pleiades cluster.
doi_str_mv 10.1051/0004-6361/201730972
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01982262v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01982262v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-4ce21f2d92974265c90ff5d3214211a65cc272783c049ae79c5da870dd4fdc723</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQexYGxdu3CTrYvY-5hkMssQHxWCbup6GOZBI9VKphT89yZUsjrcw3cPnCPEHcIDQolrAJBFxRWuCVAxaEUXIkPJVICS1aXIZuJKXKf0OZ6ENWfidrsLeQqn8J2nPh3DkPLH5q0NK7GIdp_Czb8uxcfz07bdFN37y2vbdIUj5mMhXSCM5DVpJakqnYYYS8-EkhDtaDhSpGp2ILUNSrvS21qB9zJ6p4iX4v6cu7N78zP0X3b4NQfbm03TmckD1DVRRSccWT6zbjikNIQ4PyCYaQcztTRTSzPvwH-mCUwt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The seven sisters DANCe: IV. Bayesian hierarchical model</title><source>EZB Electronic Journals Library</source><creator>Olivares, J. ; Sarro, L. M. ; Moraux, E. ; Berihuete, A. ; Bouy, H. ; Hernández-Jiménez, S. ; Bertin, E. ; Galli, P. A. B. ; Huelamo, N. ; Bouvier, J. ; Barrado, D.</creator><creatorcontrib>Olivares, J. ; Sarro, L. M. ; Moraux, E. ; Berihuete, A. ; Bouy, H. ; Hernández-Jiménez, S. ; Bertin, E. ; Galli, P. A. B. ; Huelamo, N. ; Bouvier, J. ; Barrado, D.</creatorcontrib><description>Context . The photometric and astrometric measurements of the Pleiades DANCe DR2 survey provide an excellent test case for the benchmarking of statistical tools aiming at the disentanglement and characterisation of nearby young open cluster (NYOC) stellar populations. Aims . We aim to develop, test, and characterise of a new statistical tool (intelligent system) for the sifting and analysis of NYOC populations. Methods . Using a Bayesian formalism, with this statistical tool we were able to obtain the posterior distributions of parameters governing the cluster model. It also used hierarchical bayesian models to establish weakly informative priors, and incorporates the treatment of missing values and non-homogeneous (heteroscedastic) observational uncertainties. Results . From simulations, we estimated that this statistical tool renders kinematic (proper motion) and photometric (luminosity) distributions of the cluster population with a contamination rate of 5.8 ± 0.2%. The luminosity distributions and present day mass function agree with the ones found in a recent study, on the completeness interval of the survey. At the probability threshold of maximum accuracy, the classifier recovers ≈90% of the recently published candidate members and finds 10% of new ones. Conclusions . A new statistical tool for the analysis of NYOC is introduced, tested, and characterised. Its comprehensive modelling of the data properties allows it to get rid of the biases present in previous works. In particular, those resulting from the use of only completely observed (non-missing) data and the assumption of homoskedastic uncertainties. Also, its Bayesian framework allows it to properly propagate observational uncertainties into membership probabilities and cluster velocity and luminosity distributions. Our results are in a general agreement with those from the literature, although we provide the most up-to-date and extended list of candidate members of the Pleiades cluster.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201730972</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Astrophysics ; Physics</subject><ispartof>Astronomy and astrophysics (Berlin), 2018-09, Vol.617, p.A15</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-4ce21f2d92974265c90ff5d3214211a65cc272783c049ae79c5da870dd4fdc723</cites><orcidid>0000-0002-7084-487X ; 0000-0003-2425-3793 ; 0000-0002-5827-160X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01982262$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Olivares, J.</creatorcontrib><creatorcontrib>Sarro, L. M.</creatorcontrib><creatorcontrib>Moraux, E.</creatorcontrib><creatorcontrib>Berihuete, A.</creatorcontrib><creatorcontrib>Bouy, H.</creatorcontrib><creatorcontrib>Hernández-Jiménez, S.</creatorcontrib><creatorcontrib>Bertin, E.</creatorcontrib><creatorcontrib>Galli, P. A. B.</creatorcontrib><creatorcontrib>Huelamo, N.</creatorcontrib><creatorcontrib>Bouvier, J.</creatorcontrib><creatorcontrib>Barrado, D.</creatorcontrib><title>The seven sisters DANCe: IV. Bayesian hierarchical model</title><title>Astronomy and astrophysics (Berlin)</title><description>Context . The photometric and astrometric measurements of the Pleiades DANCe DR2 survey provide an excellent test case for the benchmarking of statistical tools aiming at the disentanglement and characterisation of nearby young open cluster (NYOC) stellar populations. Aims . We aim to develop, test, and characterise of a new statistical tool (intelligent system) for the sifting and analysis of NYOC populations. Methods . Using a Bayesian formalism, with this statistical tool we were able to obtain the posterior distributions of parameters governing the cluster model. It also used hierarchical bayesian models to establish weakly informative priors, and incorporates the treatment of missing values and non-homogeneous (heteroscedastic) observational uncertainties. Results . From simulations, we estimated that this statistical tool renders kinematic (proper motion) and photometric (luminosity) distributions of the cluster population with a contamination rate of 5.8 ± 0.2%. The luminosity distributions and present day mass function agree with the ones found in a recent study, on the completeness interval of the survey. At the probability threshold of maximum accuracy, the classifier recovers ≈90% of the recently published candidate members and finds 10% of new ones. Conclusions . A new statistical tool for the analysis of NYOC is introduced, tested, and characterised. Its comprehensive modelling of the data properties allows it to get rid of the biases present in previous works. In particular, those resulting from the use of only completely observed (non-missing) data and the assumption of homoskedastic uncertainties. Also, its Bayesian framework allows it to properly propagate observational uncertainties into membership probabilities and cluster velocity and luminosity distributions. Our results are in a general agreement with those from the literature, although we provide the most up-to-date and extended list of candidate members of the Pleiades cluster.</description><subject>Astrophysics</subject><subject>Physics</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQexYGxdu3CTrYvY-5hkMssQHxWCbup6GOZBI9VKphT89yZUsjrcw3cPnCPEHcIDQolrAJBFxRWuCVAxaEUXIkPJVICS1aXIZuJKXKf0OZ6ENWfidrsLeQqn8J2nPh3DkPLH5q0NK7GIdp_Czb8uxcfz07bdFN37y2vbdIUj5mMhXSCM5DVpJakqnYYYS8-EkhDtaDhSpGp2ILUNSrvS21qB9zJ6p4iX4v6cu7N78zP0X3b4NQfbm03TmckD1DVRRSccWT6zbjikNIQ4PyCYaQcztTRTSzPvwH-mCUwt</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Olivares, J.</creator><creator>Sarro, L. M.</creator><creator>Moraux, E.</creator><creator>Berihuete, A.</creator><creator>Bouy, H.</creator><creator>Hernández-Jiménez, S.</creator><creator>Bertin, E.</creator><creator>Galli, P. A. B.</creator><creator>Huelamo, N.</creator><creator>Bouvier, J.</creator><creator>Barrado, D.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7084-487X</orcidid><orcidid>https://orcid.org/0000-0003-2425-3793</orcidid><orcidid>https://orcid.org/0000-0002-5827-160X</orcidid></search><sort><creationdate>20180901</creationdate><title>The seven sisters DANCe</title><author>Olivares, J. ; Sarro, L. M. ; Moraux, E. ; Berihuete, A. ; Bouy, H. ; Hernández-Jiménez, S. ; Bertin, E. ; Galli, P. A. B. ; Huelamo, N. ; Bouvier, J. ; Barrado, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-4ce21f2d92974265c90ff5d3214211a65cc272783c049ae79c5da870dd4fdc723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astrophysics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olivares, J.</creatorcontrib><creatorcontrib>Sarro, L. M.</creatorcontrib><creatorcontrib>Moraux, E.</creatorcontrib><creatorcontrib>Berihuete, A.</creatorcontrib><creatorcontrib>Bouy, H.</creatorcontrib><creatorcontrib>Hernández-Jiménez, S.</creatorcontrib><creatorcontrib>Bertin, E.</creatorcontrib><creatorcontrib>Galli, P. A. B.</creatorcontrib><creatorcontrib>Huelamo, N.</creatorcontrib><creatorcontrib>Bouvier, J.</creatorcontrib><creatorcontrib>Barrado, D.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olivares, J.</au><au>Sarro, L. M.</au><au>Moraux, E.</au><au>Berihuete, A.</au><au>Bouy, H.</au><au>Hernández-Jiménez, S.</au><au>Bertin, E.</au><au>Galli, P. A. B.</au><au>Huelamo, N.</au><au>Bouvier, J.</au><au>Barrado, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The seven sisters DANCe: IV. Bayesian hierarchical model</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>617</volume><spage>A15</spage><pages>A15-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context . The photometric and astrometric measurements of the Pleiades DANCe DR2 survey provide an excellent test case for the benchmarking of statistical tools aiming at the disentanglement and characterisation of nearby young open cluster (NYOC) stellar populations. Aims . We aim to develop, test, and characterise of a new statistical tool (intelligent system) for the sifting and analysis of NYOC populations. Methods . Using a Bayesian formalism, with this statistical tool we were able to obtain the posterior distributions of parameters governing the cluster model. It also used hierarchical bayesian models to establish weakly informative priors, and incorporates the treatment of missing values and non-homogeneous (heteroscedastic) observational uncertainties. Results . From simulations, we estimated that this statistical tool renders kinematic (proper motion) and photometric (luminosity) distributions of the cluster population with a contamination rate of 5.8 ± 0.2%. The luminosity distributions and present day mass function agree with the ones found in a recent study, on the completeness interval of the survey. At the probability threshold of maximum accuracy, the classifier recovers ≈90% of the recently published candidate members and finds 10% of new ones. Conclusions . A new statistical tool for the analysis of NYOC is introduced, tested, and characterised. Its comprehensive modelling of the data properties allows it to get rid of the biases present in previous works. In particular, those resulting from the use of only completely observed (non-missing) data and the assumption of homoskedastic uncertainties. Also, its Bayesian framework allows it to properly propagate observational uncertainties into membership probabilities and cluster velocity and luminosity distributions. Our results are in a general agreement with those from the literature, although we provide the most up-to-date and extended list of candidate members of the Pleiades cluster.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201730972</doi><orcidid>https://orcid.org/0000-0002-7084-487X</orcidid><orcidid>https://orcid.org/0000-0003-2425-3793</orcidid><orcidid>https://orcid.org/0000-0002-5827-160X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2018-09, Vol.617, p.A15
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_01982262v1
source EZB Electronic Journals Library
subjects Astrophysics
Physics
title The seven sisters DANCe: IV. Bayesian hierarchical model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20seven%20sisters%20DANCe:%20IV.%20Bayesian%20hierarchical%20model&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Olivares,%20J.&rft.date=2018-09-01&rft.volume=617&rft.spage=A15&rft.pages=A15-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201730972&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01982262v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c233t-4ce21f2d92974265c90ff5d3214211a65cc272783c049ae79c5da870dd4fdc723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true