Loading…
Determination of cirrus radiative parameters from combination between active and passive remote sensing measurements during FRENCH/DIRAC 2001
In the context of the next AQUA Train satellite experiment, airborne measurements were carried out to simulate satellite measurements. They were conducted between September 25 and October 12, 2001, off the coast of southern France over the Atlantic Ocean and over the Mediterranean Sea, respectively....
Saved in:
Published in: | Atmospheric research 2004-11, Vol.72 (1), p.425-452 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the context of the next AQUA Train satellite experiment, airborne measurements were carried out to simulate satellite measurements. They were conducted between September 25 and October 12, 2001, off the coast of southern France over the Atlantic Ocean and over the Mediterranean Sea, respectively. During the intensive Field Radiation Experiment on Natural Cirrus and High-level clouds (FRENCH/DIRAC 2001), natural ice clouds were sampled from in situ and remote sensing measurements. On October 5 and 7, 2001, cirrus cloud decks were described by a complete data set acquired by: (i) in situ microphysical instruments onboard the TBM-700 aircraft: PMS probe, and Polar Nephelometer (ii) and downward-looking radiative instruments onboard the Mystère 20 aircraft: an infrared radiometer, a lidar, a visible imager with polarisation capabilities, and a middle infrared radiometer. Moreover, classical thermodynamical measurements were carried out onboard the Mystère 20. Mean microphysical characteristics of cirrus deck are derived from interpretation of remote sensing measurements. These properties are compared with those derived from in situ microphysical measurements in order to evaluate the radiative impact of natural cirrus clouds. |
---|---|
ISSN: | 0169-8095 1873-2895 |
DOI: | 10.1016/j.atmosres.2004.03.026 |