Loading…
Stress testing the dark energy equation of state imprint on supernova data
This work determines the degree to which a traditional analysis of the standard model of cosmology (ΛCDM) based on type Ia supernovae can identify deviations from a cosmological constant in the form of a redshift-dependent dark energy equation of state w(z). We introduce and apply a novel random cur...
Saved in:
Published in: | Physical review. D 2019-06, Vol.99 (12), p.1, Article 123529 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work determines the degree to which a traditional analysis of the standard model of cosmology (ΛCDM) based on type Ia supernovae can identify deviations from a cosmological constant in the form of a redshift-dependent dark energy equation of state w(z). We introduce and apply a novel random curve generator to simulate instances of w(z) from constraint families with increasing distinction from a cosmological constant. After producing a series of mock catalogs of binned type Ia supernovae corresponding to each w(z) curve, we perform a standard ΛCDM analysis to estimate the corresponding posterior densities of the absolute magnitude of type Ia supernovae, the present-day matter density, and the equation of state parameter. Using the Kullback-Leibler divergence between posterior densities as a difference measure, we demonstrate that a standard type Ia supernova cosmology analysis has limited sensitivity to extensive redshift dependencies of the dark energy equation of state. In addition, we report that larger redshift-dependent departures from a cosmological constant do not necessarily manifest easier-detectable incompatibilities with the ΛCDM model. Our results suggest that physics beyond the standard model may simply be hidden in plain sight. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.99.123529 |