Loading…
Dominant role of the epitaxial strain in the magnetism of core-shell Co/Au self-organized nanodots
Self-organized Co nanodots on a Au(111) surface have been surrounded by controlled Au rings that progressively cap the entire dots. The magnetic susceptibility of these dots has been measured in situ as a function of the Au coverage. The blocking temperature increases when the Co bilayer dots are su...
Saved in:
Published in: | Physical review letters 2009-08, Vol.103 (6), p.067202-067202, Article 067202 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Self-organized Co nanodots on a Au(111) surface have been surrounded by controlled Au rings that progressively cap the entire dots. The magnetic susceptibility of these dots has been measured in situ as a function of the Au coverage. The blocking temperature increases when the Co bilayer dots are surrounded by the first Au atomic layer and decreases with the subsequent capping. This result cannot be explained by interfacial anisotropy which is generally assumed to be the dominant term in the magnetic anisotropy of nanostructures. Using molecular dynamics simulations, we evidence that the large strain inside the Co clusters is the main driving force for the anisotropy changes during the Au encapsulation. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.103.067202 |