Loading…

Basal Transcription Defect Discriminates between Xeroderma Pigmentosum and Trichothiodystrophy in XPD Patients

Mutations in the XPD gene result in xeroderma pigmentosum (XP) and trichothiodystrophy (TTD), the phenotypes of which are often intricate. To understand the genotype/phenotype relationship, we engineered recombinant TFIIHs in which XPD subunits carry amino acid changes found in XPD patients. We demo...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cell 2003-06, Vol.11 (6), p.1635-1646
Main Authors: Dubaele, Sandy, De Santis, Luca Proietti, Bienstock, Rachelle J, Keriel, Anne, Stefanini, Miria, Van Houten, Bennett, Egly, Jean-Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mutations in the XPD gene result in xeroderma pigmentosum (XP) and trichothiodystrophy (TTD), the phenotypes of which are often intricate. To understand the genotype/phenotype relationship, we engineered recombinant TFIIHs in which XPD subunits carry amino acid changes found in XPD patients. We demonstrate that all the XPD mutations are detrimental for XPD helicase activity, thus explaining the NER defect. We also show that TFIIH from TTD patients, but not from XP patients, exhibits a significant in vitro basal transcription defect in addition to a reduced intracellular concentration. Moreover, when XPD mutations prevent interaction with the p44 subunit of TFIIH, transactivation directed by certain nuclear receptors is inhibited, regardless of TTD versus XP phenotype, thus explaining the overlapping symptoms. The implications of these mutations are discussed using a structural model of the XPD protein. Our study provides explanations for the nature and the severity of the various clinical features.
ISSN:1097-2765
1097-4164
DOI:10.1016/S1097-2765(03)00182-5